

Handbuch

EtherNet/IP

LioN-X Digital-I/O Multiprotokoll: 0980 XSL 3900-121-007D-01F (16 x Input/Output) 0980 XSL 3901-121-007D-01F (16 x Input) 0980 XSL 3903-121-007D-01F (8 x Input, 8 x Output isoliert) 0980 XSL 3923-121-007D-01F (8 x Input, 8 x Output)

Inhalt

1 Zu diesem Handbuch	8
1.1 Allgemeine Informationen	8
1.2 Erläuterung der Symbolik	9
1.2.1 Verwendung von Gefahrenhinweisen	9
1.2.2 Verwendung von Hinweisen	9
1.3 Versionsinformationen	9
2 Sicherheitshinweise	10
2.1 Bestimmungsgemäßer Gebrauch	10
2.2 Qualifiziertes Personal	11
3 Bezeichnungen und Synonyme	12
4 Systembeschreibung	15
4.1 Gerätevarianten	16
4.2 I/O-Port-Übersicht	17
5 Übersicht der Produktmerkmale	21
5.1 EtherNet/IP Produktmerkmale	21
5.2 Integrierter Webserver	23
5.3 Sicherheitsmerkmale	24
5.4 Sonstige Merkmale	25

6 Montage und Verdrahtung	26
6.1 Allgemeine Informationen	26
6.2 Äußere Abmessungen	27
6.2.1 LioN-X Digital-I/O Multiprotokoll-Varianten	27
6.2.2 Hinweise	31
6.3 Port-Belegungen	32
6.3.1 Ethernet-Ports, M12-Buchse, 4-polig, D-kodiert	32
6.3.2 Spannungsversorgung mit M12-Power L-kodiert	33
6.3.3 I/O-Ports als M12-Buchse	34
6.3.3.1 I/O-Ports	35
7 Inbetriebnahme	36
7.1 EDS-Datei	36
7.2 MAC-Adressen	36
7.3 Auslieferungszustand	37
7.4 Netzwerk-Parameter einstellen	38
7.5 Drehkodierschalter einstellen	38
7.5.1 EtherNet/IP-Einstellung und IP-Konfigurati	
Drehkodierschalter	41
7.5.2 Werkseinstellungen wiederherstellen	42
8 Konfiguration EtherNet/IP	43
8.1 Assembly-Typen	43
8.2 Verbindungen	44
8.2.1 16 DI/DO (Exclusive Owner)-Parameter	45
8.2.2 16 DI (Input Only)-Parameter	45
8.2.3 16 DI (Listen Only)-Parameter	46
8.2.4 Extended Diagnoses (Input Only)-Parameter	47

9 Konfigurationsparameter	48
9.1 Allgemeine Einstellungen	49
9.1.1 QuickConnect	50
9.1.2 Force mode lock	50
9.1.3 Web interface lock	51
9.1.4 Report U _L /U _{AUX} supply voltage fault	51
9.1.5 Report DO Fault without U _L /U _{Aux}	51
9.1.6 CIP object configuration lock	51
9.1.7 External configuration lock	51
9.2 Kanaleinstellungen	52
9.2.1 IO Mapping (Ch1 16)	54
9.2.2 DO Surveillance Timeout (Ch1 16)	54
9.2.3 DO Failsafe (Ch1 16)	54
9.2.4 DO Restart Mode (Ch1 16)	55
9.2.5 DO Current Limit (Ch1 16)	55
9.2.6 DI Logic (Ch1 16)	56
9.2.7 DI Filter (Ch1 16)	56
9.2.8 Channel Mode (Ch1 16)	56
10 Prozessdatenzuweisung	58
10.1 Consuming data image (Output)	58
10.1.1 Digitaler Output – Channel control	58
10.2 Producing data image (Input)	59
10.2.1 Digitaler Input – Channel status	59
10.2.2 Allgemeine Diagnose	59
10.2.3 Sensor-Diagnose	60
10.2.4 Actuator/U _L /U _{Aux} -Diagnose	60
10.3 Producing data image (Extended diagnosis)	61
10.4 Beispielanwendungen	61
10.4.1 Prozessdaten-Images – standardmäßige Konfiguration	61
10.4.2 Prozessdaten-Images mit modifizierten Datengrößen	62

11 Konfiguration und Betrieb mit Rockwell Automation Studio 5000®	64
11.1 Grundlegende Inbetriebnahme	64
12 CIP-Objektklassen	70
12.1 EtherNet/IP-Objektklassen 12.1.1 Identity Object (0x01) 12.1.2 Assembly Object (0x04) 12.1.3 Discrete Input Point Object (0x08) 12.1.4 DLR Object (0x47) 12.1.5 QoS Object (0x48) 12.1.6 TCP/IP Object (0xF5) 12.1.7 Ethernet Link Object (0xF6) 12.1.8 LLDP Management Object (0x109) 12.2 Herstellerspezifische Objektklassen 12.2.1 General Settings Object (0xA0) 12.2.2 Channel Settings Object (0xA1) 12.3 "Message"-Konfiguration in Rockwell Automation Studio 5000®	70 71 74 75 76 80 82 85 87 87 89
13 Diagnosebearbeitung	93
13.1 Fehler der System-/Sensorversorgung 13.2 Fehler der Auxiliary-/ Aktuatorversorgung 13.3 Überlast/Kurzschluss der I/O-Port-Sensorversorgungsausgänge 13.4 Überlast/Kurzschluss der digitalen Ausgänge	93 94 95 96
14 lloT-Funktionalität	97
14.1 MQTT 14.1.1 MQTT-Konfiguration	98 98

14.1.2 MQTT-Topics	101
14.1.2.1 Base-Topic	101
14.1.2.2 Publish-Topic	104
14.1.2.3 Command-Topic (MQTT Subscribe)	112
14.1.3 MQTT-Konfiguration - Schnellstart-Anleitung	116
14.1.3.1 MQTT-Konfiguration über JSON	116
14.2 OPC UA	118
14.2.1 OPC UA-Konfiguration	118
14.2.1.1 Gateway-Objekte	121
14.2.1.2 Ports-Objekte	124
14.2.1.3 Channel objects	125
14.2.2 OPC UA Address-Space	127
14.2.3 OPC UA-Konfiguration - Schnellstart-Anleitung	128
14.2.3.1 OPC UA-Konfiguration über JSON	128
14.3 REST API	130
14.3.1 Standard Geräte-Information	130
14.3.2 Struktur	131
14.3.3 Konfiguration und Forcing	135
14.4 CoAP-Server	137
14.4.1 CoAP-Konfiguration	137
14.4.2 REST API-Zugriff via CoAP	138
14.4.3 CoAP-Konfiguration - Schnellstart-Anleitung	140
14.4.3.1 CoAP-Konfiguration über JSON	140
14.5 Syslog	142
14.5.1 Syslog-Konfiguration	142
14.5.2 Syslog-Konfiguration - Schnellstart-Anleitung	145
14.5.2.1 Syslog-Konfiguration über JSON	145
14.6 Network Time Protocol (NTP)	147
14.6.1 NTP-Konfiguration	147
14.6.2 NTP-Konfiguration - Schnellstart-Anleitung	149
14.6.2.1 NTP-Konfiguration über JSON	149
15 Integrierter Webserver	151
15.1 LioN-X 0980 XSLVarianten	152

Inhalt

152
153
154
156
157
158
159
160
161
161
162
162
164
166
169

1 Zu diesem Handbuch

1.1 Allgemeine Informationen

Lesen Sie die Montage- und Betriebsanleitung in diesem Handbuch sorgfältig, bevor Sie die Geräte in Betrieb nehmen. Bewahren Sie das Handbuch an einem Ort auf, der für alle Benutzer zugänglich ist.

Die in diesem Handbuch verwendeten Texte, Abbildungen, Diagramme und Beispiele dienen ausschließlich der Erläuterung zur Bedienung und Anwendung der Geräte.

Bei weitergehenden Fragen zur Installation und Inbetriebnahme der Geräte sprechen Sie uns bitte an.

Belden Deutschland GmbH

- Lumberg Automation™ –

Im Gewerbepark 2

D-58579 Schalksmühle

Deutschland

lumberg-automation-support.belden.com

www.lumberg-automation.com

catalog.belden.com

Belden Deutschland GmbH – Lumberg Automation™ – behält sich vor, jederzeit technische Änderungen oder Änderungen dieses Handbuches ohne besondere Hinweise vorzunehmen.

1.2 Erläuterung der Symbolik

1.2.1 Verwendung von Gefahrenhinweisen

Gefahrenhinweise sind wie folgt gekennzeichnet:

Gefahr: Bedeutet, dass Tod, schwere Körperverletzung oder erheblicher Sachschaden eintreten wird, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Warnung: Bedeutet, dass Tod, schwere Körperverletzung oder erheblicher Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Vorsicht: Bedeutet, dass eine leichte Körperverletzung oder ein Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

1.2.2 Verwendung von Hinweisen

Hinweise sind wie folgt dargestellt:

Achtung: Ist eine wichtige Information über das Produkt, die Handhabung des Produktes oder den jeweiligen Teil der Dokumentation, auf den besonders aufmerksam gemacht werden soll.

1.3 Versionsinformationen

Version	Erstellt	Änderungen
1.0	03/2023	
1.1	07/2023	Warnhinweis in Kap. Drehkodierschalter einstellen auf Seite 38

Tabelle 1: Übersicht der Handbuch-Revisionen

2 Sicherheitshinweise

2.1 Bestimmungsgemäßer Gebrauch

Die in diesem Handbuch beschriebenen Produkte dienen als dezentrales I/O Device in einem Industrial-Ethernet-Netzwerk.

Wir entwickeln, fertigen, prüfen und dokumentieren unsere Produkte unter Beachtung der Sicherheitsnormen. Bei Beachtung der für Projektierung, Montage und bestimmungsgemäßen Betrieb beschriebenen Handhabungsvorschriften und sicherheitstechnischen Anweisungen gehen von den Produkten im Normalfall keine Gefahren für Personen oder Sachen aus.

Die Module erfüllen die Anforderungen der EMV-Richtlinie (89/336/EWG, 93/68/EWG und 93/44/EWG) und der Niederspannungsrichtlinie (73/23/EWG).

Ausgelegt sind die Geräte für den Einsatz im Industriebereich. Die industrielle Umgebung ist dadurch gekennzeichnet, dass Verbraucher nicht direkt an das öffentliche Niederspannungsnetz angeschlossen sind. Für den Einsatz im Wohnbereich oder in Geschäfts- und Gewerbebereichen sind zusätzliche Maßnahmen erforderlich.

Achtung: Diese Einrichtung kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden, angemessene Gegenmaßnahmen durchzuführen.

Die einwandfreie und sichere Funktion des Produkts erfordert einen sachgemäßen Transport, eine sachgemäße Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung.

Beachten Sie bei der Projektierung, Installation, Inbetriebnahme, Wartung und Prüfung der Geräte die für den spezifischen Anwendungsfall gültigen Sicherheits- und Unfallverhütungsvorschriften.

Installieren Sie ausschließlich Leitungen und Zubehör, die den Anforderungen und Vorschriften für Sicherheit, elektromagnetische

Verträglichkeit und ggf. Telekommunikations-Endgeräteeinrichtungen sowie den Spezifikationsangaben entsprechen. Informationen darüber, welche Leitungen und welches Zubehör zur Installation zugelassen sind, erhalten Sie von Lumberg Automation™ oder sind in diesem Handbuch beschrieben.

2.2 Qualifiziertes Personal

Zur Projektierung, Installation, Inbetriebnahme, Wartung und Prüfung der Geräte ist ausschließlich eine anerkannt ausgebildete Elektrofachkraft befugt, die mit den Sicherheitsstandards der Automatisierungstechnik vertraut ist.

Die Anforderungen an das Personal richten sich nach den Anforderungsprofilen, die vom ZVEI, VDMA oder vergleichbaren Organisationen beschrieben sind.

Ausschließlich Elektrofachkräfte, die den Inhalt dieses Handbuches kennen, sind befugt, die beschriebenen Geräte zu installieren und zu warten. Dies sind Personen, die

- ▶ aufgrund ihrer fachlichen Ausbildung, Kenntnis und Erfahrung sowie Kenntnis der einschlägigen Normen die auszuführenden Arbeiten beurteilen und mögliche Gefahren erkennen können oder
- ▶ aufgrund einer mehrjährigen Tätigkeit auf vergleichbarem Gebiet den gleichen Kenntnisstand wie nach einer fachlichen Ausbildung haben.

Eingriffe in die Hard- und Software der Produkte, die den Umfang dieses Handbuchs überschreiten, darf ausschließlich Belden Deutschland GmbH – Lumberg Automation™ – vornehmen.

Warnung: Unqualifizierte Eingriffe in die Hard- oder Software oder die Nichtbeachtung der in diesem Handbuch gegebenen Warnhinweise können schwere Personen- oder Sachschäden zur Folge haben.

Achtung: Belden übernimmt keinerlei Haftung für jegliche Schäden, die durch unqualifiziertes Personal oder unsachgemäßen Gebrauch entstehen. Dadurch erlischt die Garantie automatisch.

3 Bezeichnungen und Synonyme

AOI	Add-On Instruction		
API	Application Programming Interface		
BF	Bus-Fault-LED		
Big Endian	Datenformat mit High-B an erster Stelle (PROFINET)		
BUI	Back-Up Inconsistency (EIP-Diagnose)		
СС	CC-Link IE Field		
Ch. A	Channel A (Pin 4) des I/O-Ports		
Ch. B	Channel B (Pin 2) des I/O-Ports		
CIP	Common Industrial Protocol (Medien-unabhängiges Protokoll)		
CoAP	Constrained Application Protocol		
CSP+	Control & Communication System Profile Plus		
DCP	Discovery and Configuration Protocol		
DevCom	Device Comunicating (EIP-Diagnose)		
DevErr	Device Error (EIP-Diagnose)		
DI	Digital Input		
DIA	Diagnose-LED		
DO	Digital Output		
DIO	Digital Input/Output		
DTO	Device Temperature Overrun (EIP-Diagnose)		
DTU	Devie Temperature Underrun (EIP-Diagnose)		
DUT	Device under test		
EIP	EtherNet/IP		
ERP	Enterprise Resource Planning system		
ETH	ETHERNET		
FE	Funktionserde		
FME	Force Mode Enabled (EIP-Diagnose)		
FSU	Fast Start-Up		

GSDML	General Station Description Markup Language		
High-B	High-Byte		
ICT	Invalid Cycle Time (EIP-Diagnose)		
IIoT	Industrial Internet of Things		
ILE	Input process data Length Error (EIP-Diagnose)		
IME	Internal Module Error (EIP-Diagnose)		
I/O	Input / Output		
I/O-Port	X1 X8		
I/O-Port Pin 2	Channel B von X1 X8		
I/O-Port Pin 4 (C/Q)	Channel A von X1 X8		
IVE	IO-Link port Validation Error (EIP-Diagnose)		
I&M	Identification & Maintenance		
JSON	JavaScript Object Notation (Plattform-unabhängiges Datenformat)		
L+	I/O-Port Pin 1, Sensor-Spannungsversorgung		
LioN-X 60	60 mm breite LioN-X-Gerätevariante		
Little Endian	Datenformat mit Low-B an erster Stelle (EtherNet/IP)		
LLDP	Link Layer Discovery Protocol		
Low-B	Low-Byte		
LSB	Least Significant Bit		
LVA	Low Voltage Actuator Supply (EIP-Diagnose)		
LVS	Low Voltage System/Sensor Supply (EIP-Diagnose)		
MIB	Management Information Base		
MP	Multiprotokoll: PROFINET + EtherNet/IP + EtherCAT® + Modbus TCP (+ CC-Link IE Field Basic)		
MQTT	Message Queuing Telemetry Transport (offenes Netzwerk- Protokoll)		
MSB	Most Significant Bit		
M12	Metrisches Gewinde nach DIN 13-1 mit 12 mm Durchmesser		
NTP	Network Time Protocol		
OLE	Output process data Length Error (EIP-Diagnose)		

OPC UA	Open Platform Communications Unified Architecture (Plattform-unabhängige, Service-orientierte Architektur)		
PLC / SPS	Programmable Logic Controller (= Speicherprogrammierbare Steuerung SPS)		
PN	PROFINET		
PWR	Power		
REST	REpresentational State Transfer		
RFC	Request for Comments		
RPI	Requested Packet Interval		
RWr	Word-Dateneingang aus Sicht der Master-Station (CC-Link)		
RWw	Word-Datenausgang aus Sicht der Master-Station (CC-Link)		
RX	Bit-Dateneingang aus Sicht der Master-Station (CC-Link)		
RY	Bit-Datenausgang aus Sicht der Master-Station (CC-Link)		
SCA	Short Circuit Actuator/U _L /U _{AUX} (EIP-Diagnose)		
scs	Short Circuit Sensor (EIP-Diagnose)		
SLMP	Seamless Message Protocol		
SNMP	Simple Network Management Protocol		
SP	Single-Protokoll (PROFINET, EtherNet/IP, EtherCAT®, Modbus TCP oder CC-Link IE Field Basic)		
SPE	Startup Parameterization Error (EIP-Diagnose)		
U _{AUX}	U _{Auxiliary} , Versorgungsspannung für den Lastkreis (Aktuatorversorgung auf den Class B-Ports)		
UDP	User Datagram Protocol		
UDT	User-Defined Data Types		
UINT8	Byte in der PLC (IB, QB)		
UINT16	Unsigned Integer mit 16 Bits oder Wort in der PLC (IW, QW)		
UL	U _{Load} , Versorgungsspannung für den Lastkreis (Aktuatorversorgung auf Class A)		
UL	Underwriters Laboratories Inc. (Zertifizierungsstelle)		
UTC	Koordinierte Weltzeit (Temps Universel Coordonné)		

Tabelle 2: Bezeichnungen und Synonyme

4 Systembeschreibung

Die LioN-Module (Lumberg AutomationTM Input/Output Network) fungieren als Schnittstelle in einem industriellen Ethernet-System: Eine zentrale Steuerung auf Management-Ebene kann mit der dezentralen Sensorik und Aktorik auf Feldebene kommunizieren. Durch die mit den LioN-Modulen realisierbaren Linien- oder Ring-Topologien ist nicht nur eine zuverlässige Datenkommunikation, sondern auch eine deutliche Reduzierung der Verdrahtung und damit der Kosten für Installation und Wartung möglich. Zudem besteht die Möglichkeit der einfachen und schnellen Erweiterung.

4.1 Gerätevarianten

Folgende Digital-I/O-Gerätevarianten sind in der LioN-X-Familie erhältlich:

Artikelnumme	Produktbezeichnung	Beschreibung	I/O-Portfunktionalität	
935705001	0980 XSL 3900-121-007D-01F	LioN-X M12-60 mm, I/O Device Multiprotokoll (PN, EIP, EC, MB, CC) Security	16 x Input/Output universal	
935706002	0980 XSL 3901-121-007D-01F	LioN-X M12-60 mm, I/O Device Multiprotokoll (PN, EIP, EC, MB, CC) Security	16 x Input	
935707001	0980 XSL 3903-121-007D-01F	LioN-X M12-60 mm, I/O Device Multiprotokoll (PN, EIP, EC, MB, CC) Security	8 x Input, 8 x Output Mixmodul, galvanisch getrennt	
935708001	0980 XSL 3923-121-007D-01F	LioN-X M12-60 mm, I/O Device Multiprotokoll (PN, EIP, EC, MB, CC) Security	8 x Input, 8 x Output Mixmodul, keine galvanische Trennung der Ausgänge	

Tabelle 3: Übersicht der LioN-X Digital-I/O Varianten

4.2 I/O-Port-Übersicht

Die folgenden Tabellen zeigen die Hauptunterschiede in den I/O-Ports innerhalb der LioN-X-Familie. Pin 4 und Pin 2 der I/O-Ports können teilweise als Digitaler Eingang oder Digitaler Ausgang konfiguriert werden.

LioN-X 16DIO-Ports

Geräte- variante	Port	Pin 1 U _S	Pin 4 / Ch. A (In/Out)		Pin 2 / Ch. B (In/Out)	
	Info:	_	Type 3	Supply by U _L	Type 3	Supply by U _L
	X8:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
	X7:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
0980 XSL	X6:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
3900	X5:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
	X4:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
	Х3:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
	X2:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
	X1:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)

Tabelle 4: Port-Konfiguration von 0980 XSL 3900...-Varianten

LioN-X 16DI-Ports

Geräte- variante	Port	Pin 1 U _S	Pin 4 / Ch. A (Input)	Pin 2 / Ch. B (Input)
	Info:	_	Type 3	Туре 3
	X8:	U _S (4 A)	DI	DI
0980 XSL 3901	X7:	U _S (4 A)	DI	DI
	X6:	U _S (4 A)	DI	DI
	X5:	U _S (4 A)	DI	DI
	X4:	U _S (4 A)	DI	DI
	X3:	U _S (4 A)	DI	DI
	X2:	U _S (4 A)	DI	DI
	X1:	U _S (4 A)	DI	DI

Tabelle 5: Port-Konfiguration von 0980 XSL 3901...-Varianten

LioN-X 8DI8DO-Ports mit galvanischer Trennung der Ausgänge

Geräte- variante	Port	Pin 1 U _S	Pin 4 / Ch. A (In/Out)		Pin 2 / Ch. B (In/Out)	
	Info:	-	Type 3	Supply by U _L	Туре 3	Supply by U _L
	X8:	-	-	DO (2 A)	-	DO (2 A)
	X7:	_	_	DO (2 A)	_	DO (2 A)
0980 XSL 3903	X6:	_	_	DO (2 A)	_	DO (2 A)
	X5:	_	-	DO (2 A)	_	DO (2 A)
	X4:	U _S (4 A)	DI	_	DI	_
	Х3:	U _S (4 A)	DI	-	DI	_
	X2:	U _S (4 A)	DI	-	DI	_
	X1:	U _S (4 A)	DI	_	DI	-

Tabelle 6: Port-Konfiguration von 0980 XSL 3903...-Varianten

LioN-X 8DI8DO-Ports ohne galvanische Trennung der Ausgänge

Geräte- variante	Port	Pin 1 U _S	Pin 4 / Ch. A (In/Out)		Pin 2 / Ch. B (In/Out)	
	Info:	-	Type 3	Supply by U _L	Type 3	Supply by U _L
	X8:	-	_	DO (2 A)	-	DO (2 A)
	X7:	_	_	DO (2 A)	_	DO (2 A)
	X6:	-	_	DO (2 A)	_	DO (2 A)
0980 XSL 3923	X5:	-	_	DO (2 A)	_	DO (2 A)
	X4:	U _S (200 mA)	DI	_	DI	-
	X3:	U _S (200 mA)	DI	-	DI	-
	X2:	U _S (200 mA)	DI	-	DI	-
	X1:	U _S (200 mA)	DI	-	DI	-

Tabelle 7: Port-Konfiguration von 0980 XSL 3923...-Varianten

5 Übersicht der Produktmerkmale

5.1 EtherNet/IP Produktmerkmale

Datenverbindung

Als Anschlussmöglichkeit bietet LioN-X den weit verbreiteten M12-Steckverbinder mit D-Kodierung für das EtherNet/IP-Netz.

Darüber hinaus sind die Steckverbinder farbkodiert, um eine Verwechslung der Ports zu verhindern.

Übertragungsraten

Mit einer Übertragungsrate von bis zu 10/100 MBit/s sind die EtherNet/IP-Geräte in der Lage, sowohl die schnelle Übertragung von I/O-Daten, als auch die Übertragung von größeren Datenmengen zu bewältigen.

EtherNet/IP Adapter Device

Die LioN-X Digital-I/O-Module unterstützen das EtherNet/IP-Protokoll. Dadurch wird die Übertragung von zeitkritischen Prozessdaten mittels Echtzeitkommunikation zwischen den Netzkomponenten ermöglicht.

ODVA CIP specification V3.27

Die LioN-X Digital-I/O-Module erfüllen die ODVA CIP specification V3.27.

Integrierter Switch

Der integrierte Ethernet-Switch verfügt über 2 EtherNet/IP-Ports und erlaubt somit den Aufbau einer Linien- oder Ringtopologie für das EtherNet/IP-Netz.

DHCP/BOOTP

Das unterstützte Dynamic-Host-Configuration-Protocol (DHCP) und das Bootstrap-Protocol (BOOTP) bieten Mechanismen für die automatische Übernahme einer IP-Adresse von einem Server, der die Geräte verwaltet.

Device Level Ring

Der zusätzlich implementierte Device Level Ring (DLR) ermöglicht den Aufbau einer hochverfügbaren Netzinfrastruktur von bis zu 50 DLR-Ringknoten. Wird eine Verbindung unterbrochen, schalten die LioN-X-Geräte sofort auf ein alternatives Ringsegment um und gewährleisten so einen unterbrechungsfreien Betrieb. Diese DLR-Ringknoten sind nach der EtherNet/IP-Spezifikation "beacon-based".

Diagnosedaten

Die Geräte unterstützen Diagnose-Flags und erweiterte Diagnosedaten, die an die I/O-Daten angehängt werden können.

EDS-gestützte Konfiguration und Parametrierung der I/O-Ports

Sie haben die Möglichkeit, die I/O-Ports der Master-Geräte mittels EDS zu konfigurieren und zu parametrieren.

5.2 Integrierter Webserver

Anzeige der Netzparameter

Lassen Sie sich Netzparameter wie IP-Adresse, Subnetz-Maske und Gateway anzeigen.

Anzeige der Diagnostik

Sehen Sie die Diagnosedaten über den integrierten Webserver ein.

Benutzerverwaltung

Verwalten Sie über den integrierten Webserver bequem alle Benutzer.

5.3 Sicherheitsmerkmale

Firmware-Signatur

Die offiziellen Firmware-Update-Pakete beinhalten eine Signatur, die dabei hilft, das System vor manipulierten Firmware-Updates zu schützen.

Syslog

Die LioN-X Multiprotokoll-Varianten unterstützen die Nachverfolgbarkeit von Systemmeldung durch die zentrale Verwaltung und Speicherung via Syslog.

User-Manager

Der Webserver bietet einen User-Manager, der Ihnen dabei hilft, das Web-Interface gegen unerlaubte Zugriffe zu schützen. Sie können die Benutzer in Gruppen mit unterschiedlichen Zugriffs-Leveln wie "Admin" oder "Write" verwalten.

Standard-Benutzereinstellungen:

User: admin

Password: private

Achtung: Passen Sie die Standard-Benutzereinstellungen an, um dabei zu helfen, das Gerät gegen unerlaubte Zugriffe zu schützen.

5.4 Sonstige Merkmale

Schnittstellenschutz

Die Geräte verfügen über einen Verpol-, Kurzschluss- und Überlastungsschutz für alle Schnittstellen.

Für weitere Details, beachten Sie den Abschnitt Port-Belegungen auf Seite 32.

Failsafe

Die Geräte unterstützen eine Fail-Safe-Funktion. Damit haben Sie die Möglichkeit, das Verhalten jedes einzelnen als Ausgang konfigurierten Kanals im Falle eines Verlusts der SPS-Kommunikation festzulegen.

Industrial Internet of Things

LioN-X ist bereit für Industrie 4.0 und unterstützt die Integration in IIoT-Netzwerke über REST API und die IIoT-relevanten Protokolle MQTT, OPC UA und CoAP.

Farbkodierte Steckverbinder

Die farbkodierten Anschlüsse unterstützen Sie dabei, Verwechslungen bei der Verkabelung zu vermeiden.

Schutzarten: IP65 / IP67 / IP69K

Die IP-Schutzart beschreibt mögliche Umwelteinflüsse, denen die Geräte bedenkenlos ausgesetzt werden können, ohne dabei beschädigt zu werden oder für Anwender eine Gefahr darzustellen.

Die komplette LioN-X-Familie bietet IP65, IP67 und IP69K.

6 Montage und Verdrahtung

6.1 Allgemeine Informationen

Montieren Sie das Gerät mit 2 Schrauben (M4 x 25/30) auf einer ebenen Fläche. Das hierfür erforderliche Drehmoment beträgt 1 Nm. Nutzen Sie bei allen Befestigungsarten Unterlegscheiben nach DIN 125.

Achtung: Für die Ableitung von Störströmen und die EMV-Festigkeit verfügen die Geräte über einen Erdanschluss mit einem M4-Gewinde. Dieser ist mit dem Symbol für Erdung und der Bezeichnung "FE" gekennzeichnet.

Achtung: Verbinden Sie das Gerät mit der Bezugserde mittels einer Verbindung von geringer Impedanz. Im Falle einer geerdeten Montagefläche können Sie die Verbindung direkt über die Befestigungsschrauben herstellen.

Achtung: Verwenden Sie bei nicht geerdeter Montagefläche ein Masseband oder eine geeignete FE-Leitung (FE = Funktionserde). Schließen Sie das Masseband oder die FE-Leitung durch eine M4-Schraube am Erdungspunkt an und unterlegen Sie die Befestigungsschraube, wenn möglich, mit einer Unterleg- und Zahnscheibe.

6.2 Äußere Abmessungen

6.2.1 LioN-X Digital-I/O Multiprotokoll-Varianten

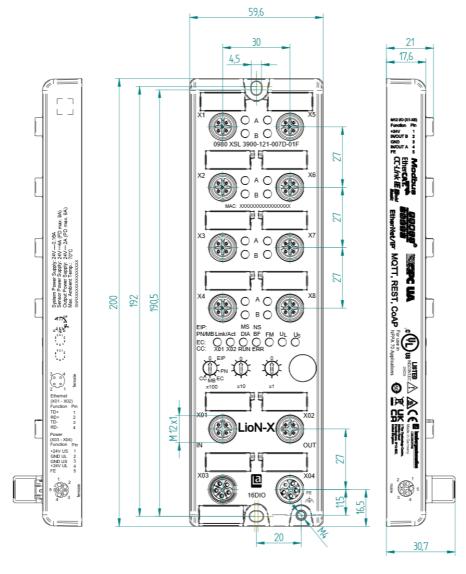


Abb. 1: 0980 XSL 3900-121-007D-01F

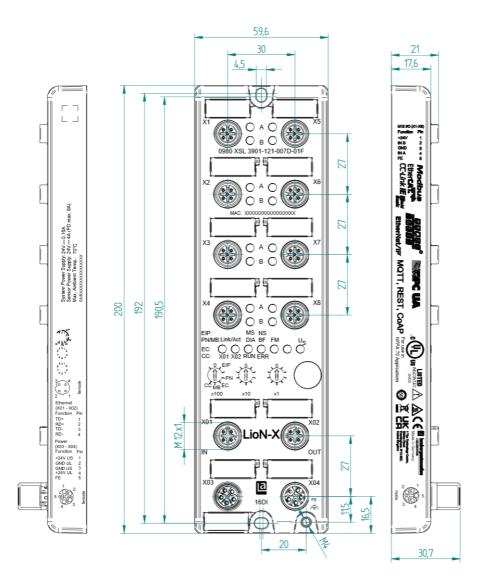


Abb. 2: 0980 XSL 3901-121-007D-01F

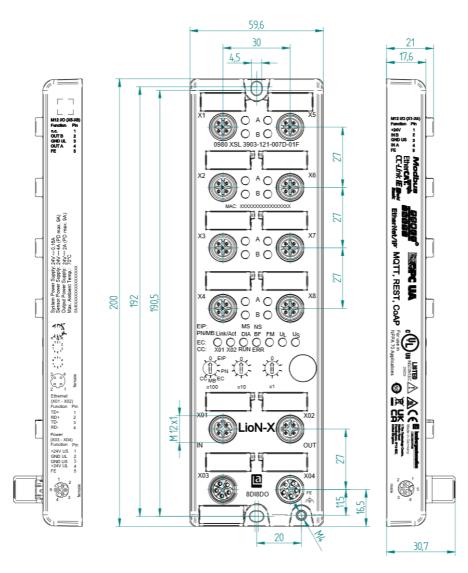


Abb. 3: 0980 XSL 3903-121-007D-01F

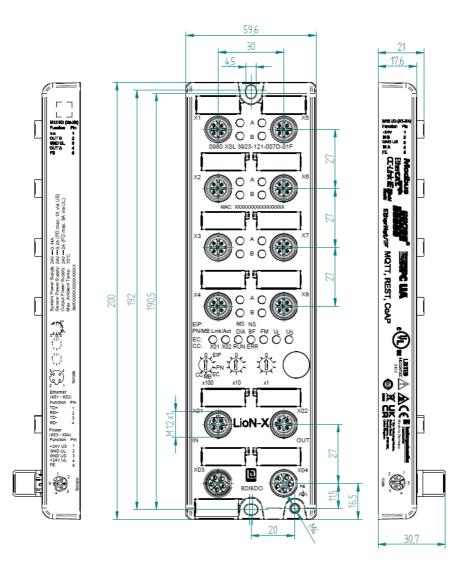


Abb. 4: 0980 XSL 3923-121-007D-01F

6.2.2 Hinweise

Achtung:

Für **UL-Anwendungen**, schließen Sie Geräte nur unter der Verwendung eines UL-zertifizierten Kabels mit geeigneten Bewertungen an (CYJV oder PVVA). Um die Steuerung zu programmieren, nehmen Sie die Herstellerinformationen zur Hand, und verwenden Sie ausschließlich geeignetes Zubehör.

Nur für den Innenbereich zugelassen. Bitte beachten Sie die maximale Höhe von 2000 m. Zugelassen bis maximal Verschmutzungsgrad 2.

Warnung: Terminals, Gehäuse feldverdrahteter Terminalboxen oder Komponenten können eine Temperatur von +60 °C übersteigen.

Warnung: Für **UL-Anwendungen** bei einer maximalen Umgebungstemperatur von +70 °C:

Verwenden Sie temperaturbeständige Kabel mit einer Hitzebeständigkeit bis mindestens +125 °C für alle LioN-X- und LioN-Xlight-Varianten.

Warnung: Beachten Sie die folgenden Maximalströme für die Sensorversorgung von Class A-Geräten:

Max. 4,0 A pro Port; für **UL-Anwendungen** max. 5,0 A für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8; max. 9,0 A gesamt (mit Derating) für die ganze Port-Gruppe X1 .. X8.

Warnung: Beachten Sie die folgenden Maximalströme für die Sensorversorgung von Class A/B-Geräten:

Max. 4,0 A pro Port; für **UL-Anwendungen** max. 5,0 A aus der U_{S-S} Stromversorgung für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8 und max. 5,0 A aus der U_{AUX} -Stromversorgung für die Port-Gruppe X5/X6/X7/X8; max. 9,0 A in Summe (mit Derating) für die gesamte Port-Gruppe (X1 .. X8).

6.3 Port-Belegungen

Alle Kontaktanordnungen, die in diesem Kapitel dargestellt sind, zeigen die Ansicht von vorne auf den Steckbereich der Steckverbinder.

6.3.1 Ethernet-Ports, M12-Buchse, 4-polig, D-kodiert

Farbkodierung: grün

Abb. 5: Schemazeichnung Port X01, X02

Port	Pin	Signal	Funktion
Ethernet	1	TD+	Sendedaten Plus
Ports X01, X02	2	RD+	Empfangsdaten Plus
	3	TD-	Sendedaten Minus
	4	RD-	Empfangsdaten Minus

Tabelle 8: Belegung Port X01, X02

Vorsicht: Zerstörungsgefahr! Legen Sie die Spannungsversorgung nie auf die Datenkabel.

6.3.2 Spannungsversorgung mit M12-Power L-kodiert

Farbkodierung: grau

Abb. 6: Schemazeichnung M12 L-Kodierung (Stecker X03 für Power In)

Abb. 7: Schemazeichnung M12 L-Kodierung (Buchse X04 für Power Out)

Spannungsversorgung	Pin	Signal	Funktion
	1	U _S (+24 V)	Sensor-/Systemversorgung
	2	GND_U _L	Masse/Bezugspotential U _L
	3	GND_U _S	Masse/Bezugspotential U _S
	4	U _L (+24 V)	Spannungsversorgung Aktuatorversorgung
	5	FE	Funktionserde

Tabelle 9: Belegungsplan Ports X03 und X04

Achtung: Verwenden Sie ausschließlich Netzteile für die System-/ Sensor- und Aktuatorversorgung, welche PELV (Protective Extra Low Voltage) oder SELV (Safety Extra Low Voltage) entsprechen. Spannungsversorgungen nach EN 61558-2-6 (Trafo) oder EN 60950-1 (Schaltnetzteile) erfüllen diese Anforderungen.

Achtung: Für das Eingangsmodul 0980 XSL 3901-xxx werden die beiden Kontakte 1 und 5 für die Spannungsversorgung der Aktorik nicht benötigt. Gleichwohl sind diese beiden Kontakte auf Stecker- und Buchsenseite miteinander gebrückt, um eine 5-polige Weiterleitung der Spannungsversorgung zu einem nachfolgenden Modul zu ermöglichen.

6.3.3 I/O-Ports als M12-Buchse

Farbkodierung: schwarz

Abb. 8: Schemazeichnung I/O-Port als M12-Buchse

6.3.3.1 I/O-Ports

0980 XSL 3900-121	Pin	Signal	Funktion
16DIO	1	+24 V	Spannungsversorgung +24 V
X1 X8	2	IN/OUT	Ch. B: Digitaler Eingang oder digitaler Ausgang
	3	GND	Masse/Bezugspotential
	4	IN/OUT	Ch. A: Digitaler Eingang oder digitaler Ausgang
	5	FE	Funktionserde

0980 XSL 3901-121	Pin	Signal	Funktion
16DI	1	+24 V	Spannungsversorgung +24 V
X1 X8	2	IN	Ch. B: Digitaler Eingang
	3	GND U _S	Masse/Bezugspotential
	4	IN	Ch. A: Digitaler Eingang
	5	FE	Funktionserde

0980 XSL 39x3-121	Pin	Signal	Funktion
8DI8DO	1	+24 V	Spannungsversorgung +24 V
X1 X4	2	IN	Ch. B: Digitaler Eingang
	3	GND U _S	Masse/Bezugspotential
	4	IN	Ch. A: Digitaler Eingang
	5	FE	Funktionserde
8DI8DO	1	n.c.	_
X5 X8	2	OUT	Ch. B: Digitaler Ausgang
	3	GND U _L	Masse/Bezugspotential
	4	OUT	Ch. A: Digitaler Ausgang
	5	FE	Funktionserde

Tabelle 10: Belegungsplan I/O-Ports

7 Inbetriebnahme

7.1 EDS-Datei

Eine EDS-Datei beschreibt das EtherNet/IP-Gerät und kann im Engineering-Tool für die Konfiguration des LioN-X-Gerätes installiert werden. Jede der LioN-X-Varianten benötigt eine eigene EDS-Datei. Die Datei kann auf den Produktseiten unseres Online-Kataloges heruntergeladen werden: catalog.belden.com

Auf Anfrage wird Ihnen die EDS-Datei auch vom Support-Team zugeschickt.

Die EDS-Dateien sind in einer Archivdatei mit dem Namen **EDS-V3.27.1-BeldenDeutschland-LioN-X-yyyymmdd.eds** zusammengefasst.

yyyymmdd steht dabei für das Ausgabedatum der Datei.

Laden Sie diese Datei herunter, und entpacken Sie sie.

Installieren Sie die EDS-Datei für die jeweilige Gerätevariante mit Hilfe des Hardware- oder Netzwerkkonfigurationstools Ihres Controller-Herstellers.

Installieren Sie in Rockwell Automation Studio 5000® die Dateien mit dem EDS Hardware Installation Tool.

Die LioN-X- und LioN-Xlight-Varianten stehen anschließend im Hardwarekatalog als *Communications Adapter* zur Verfügung.

7.2 MAC-Adressen

Jedes Gerät besitzt 3 eindeutige zugewiesene MAC-Adressen, die nicht durch den Benutzer änderbar sind. Die erste zugewiesene MAC-Adresse ist auf dem Gerät aufgedruckt.

7.3 Auslieferungszustand

EtherNet/IP-Parameter im Auslieferungszustand bzw. nach Factory Reset:

Netzwerk-Modus:	DHCP
Feste IP-Adresse:	192.168.1.XXX (XXX = Drehschalter-Position oder letzte gespeicherte Einstellung)
Subnetz-Maske:	255.255.255.0
Gateway-Adresse:	0.0.0.0
Gerätebezeichnungen:	0980 XSL 3900-121-007D-01F 0980 XSL 3901-121-007D-01F 0980 XSL 3903-121-007D-01F 0980 XSL 3923-121-007D-01F
Herstellerkennung:	21
Produkttyp:	12 (Communications Adapter)

7.4 Netzwerk-Parameter einstellen

Es gibt verschiedene Möglichkeiten für die Konfiguration der Netzparameter. Standardmäßig ist DHCP aktiviert und die Netzparameter werden durch DHCP-Requests an einen Server angefragt. Wenn Sie Netzparameter durch BOOTP-Requests anfragen möchten, müssen Sie die BOOTP-Funktion über das Web-Interface oder das TCP/IP-Interface-Objekt (CIP Class ID 0xF5, attribute 3 (0x03)) aktivieren. Es ist ebenfalls möglich, statische Netzparameter über dieses CIP-Objekt festzulegen.

7.5 Drehkodierschalter einstellen

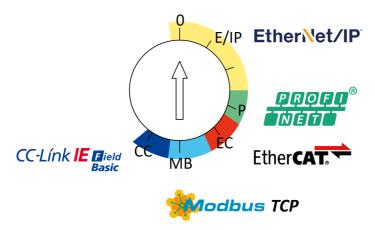
Die folgenden LioN-X-Varianten unterstützen Multiprotokoll- Anwendungen für die Protokolle EtherNet/IP (E/IP), PROFINET (P), EtherCAT® (EC), Modbus TCP (MB) und CC-Link IE Field Basic (CC):

- 0980 XSL 3900-121-007D-01F
- ▶ 0980 XSL 3901-121-007D-01F
- 0980 XSL 3903-121-007D-01F
- 0980 XSL 3923-121-007D-01F

Vorsicht:

Gefahr von Geräteschaden durch Speicherfunktionsstörung

Jegliche Unterbrechung der Stromversorgung des Gerätes während und nach der Protokollauswahl kann zu einem korrupten Gerätespeicher führen.


Nach Auswählen eines Protokolls mit anschließendem Neustart des Gerätes wird das neue Protokoll initialisiert. Dies kann bis zu 15 Sekunden dauern. In dieser Zeit ist das Gerät nicht verwendbar und die LED-Anzeigen sind außer Funktion. Nach Abschluss des Protokollwechsels kehren die LED-Anzeigen in den Normalbetrieb zurück und das Gerät kann wieder verwendet werden.

➤ Stellen Sie sicher, dass die Stromversorgung während des gesamten Vorgangs aufrecht erhalten bleibt.

Die LioN-X Multiprotokoll-Varianten ermöglichen es Ihnen, für die Kommunikation innerhalb eines Industrial-Ethernet-Systems verschiedene Protokolle auszuwählen. Dadurch lassen sich die Digitalen I/O Devices mit Multiprotokoll-Funktion in verschiedene Netze einbinden, ohne für jedes Protokoll spezifische Produkte zu erwerben. Außerdem haben Sie durch diese Technik die Option, ein und dasselbe I/O Device in verschiedenen Umgebungen einzusetzen.

Über Drehkodierschalter auf der unteren Vorderseite der Geräte stellen Sie komfortabel und einfach sowohl das Protokoll als auch die Adresse des Gerätes ein, sofern das zu verwendende Protokoll dies unterstützt. Haben Sie eine Protokollauswahl vorgenommen und einmal die zyklische Kommunikation gestartet, speichert das Gerät diese Einstellung permanent und nutzt das gewählte Protokoll ab diesem Zeitpunkt. Um mit diesem Gerät ein anderes unterstütztes Protokoll zu nutzen, führen Sie einen Factory Reset durch.

Die Multiprotokoll-Geräte sind mit insgesamt drei Drehkodierschaltern ausgestattet. Mit dem ersten Drehkodierschalter (x100) nehmen Sie die Protokolleinstellungen vor, indem Sie die entsprechende Schalterposition verwenden. Zusätzlich wird x100 dafür verwendet, die drittletzte Stelle der IP-Adresse für EIP einzustellen.

Über die anderen Drehkodierschalter (x10 / x1) legen Sie die letzten zwei Stellen der IP-Adresse fest, wenn Sie EtherNet/IP, Modbus TCP oder CC-Link IE Field Basic verwenden.

Protokoll	x100	x10	x1
EtherNet/IP	0-2	0-9	0-9
PROFINET	Р	-	-
EtherCAT®	EC	-	-
Modbus TCP	МВ	0-9	0-9
CC-Link IE Field	СС	0-9	0-9

Tabelle 11: Belegung der Drehkodierschalter für die einzelnen Protokolle

Die Einstellung, die Sie für die Auswahl eines Protokolls vornehmen, wird in den protokollspezifischen Abschnitten ausführlich beschrieben.

Im Auslieferungszustand sind keine Protokolleinstellungen im Gerät gespeichert. In diesem Fall ist ausschließlich die Auswahl des gewünschten Protokolls erforderlich. Für die Übernahme einer geänderten Drehschalter-Einstellung (Protokolleinstellung) ist der Neustart oder das Zurücksetzen (Reset) über das Web-Interface erforderlich.

Nachdem Sie die Einstellung für das Protokoll mithilfe der Drehkodierschalter vorgenommen haben, speichert das Gerät diese Einstellung, sobald es die zyklische Kommunikation aufbaut. Anschließend ist die Änderung des Protokolls über den Drehkodierschalter nicht mehr möglich. Ab diesem Zeitpunkt wird das Gerät immer mit dem gespeicherten Protokoll gestartet. In Abhängigkeit vom Protokoll ist die Änderung der IP-Adresse möglich.

Setzen Sie zum Ändern des Protokolls das Gerät auf die Werkseinstellungen zurück. Auf diese Weise werden die internen Protokoll-Daten auf die Werkseinstellungen zurückgesetzt. Informationen zum Zurücksetzen auf die Werkseinstellungen finden Sie in Kapitel Werkseinstellungen wiederherstellen auf Seite 42.

Falls Sie den Drehkodierschalter auf ungültige Stellung positionieren, meldet das Gerät dies mittels eines Blink-Codes (die LED BF/MS blinkt dreimal).

7.5.1 EtherNet/IP-Einstellung und IP-Konfiguration über Drehkodierschalter

Das EtherNet/IP-Protokoll kann über den ersten Drehkodierschalter (x100) mit einem Wert zwischen 0-2 ausgewählt werden.

Verwenden Sie alle drei Drehkodierschalter auf der Vorderseite des Gerätes, um das letzte Oktett der statischen IP-Adresse festzulegen. Die ersten drei Oktette der IP-Adresse sind standardmäßig auf 192.168.1 festgelegt.

Jeder Drehkodierschalter in der EtherNet/IP-Einstellung ist einer Dezimalstelle zugeordnet, so dass Sie eine Zahl zwischen 0 – 299 konfigurieren können. Während des Start-Ups wird die Position der Drehkodierschalter typischerweise innerhalb eines Zeitzyklus gelesen.

Beispielsweise wird die Drehkodierschalter-Einstellung 2 (x100), 1 (x10) und 0 (x1) standardmäßig als die IP-Adresse 192.168.1.210 interpretiert.

Einstellung der Drehkodierschalter	Funktion
000 (Lieferzustand, Standardwert)	Bei Auslieferung ist die DHCP-Funktion aktiviert. Die Netzparameter durch DHCP-Requests an einen Server angefragt. Wenn Sie Netzparameter durch BOOTP-Requests anfragen möchten, müssen Sie die BOOTP-Funktion über den Web-Server oder das TCP/IP-Interface-Objekt (CIP Class ID 0xF5, attribute 3 (0x03)) aktivieren. Die Netzparameter werden nicht gespeichert, allerdings kann im integrierten Web-Server die Speicherung eingestellt werden.
000 (Netzparameter bereits gespeichert)	Die zuletzt gespeicherten Netzparameter werden verwendet (IP-Adresse, Subnetzmaske, Gateway-Adresse, DHCP EIN/AUS, BOOTP EIN/AUS).
001 254	Die letzten 3 Stellen der gespeicherten oder voreingestellten IP-Adresse werden durch die Einstellungen der Drehkodierschalter überschrieben. DHCP oder BOOTP werden deaktiviert, falls nötig, und das Gerät startet mit einer statischen IP-Adresse.
255 298	Die Netzparameter werden durch DHCP oder BOOTP angefordert, jedoch nicht gespeichert.
299	Die standardmäßige Werkseinstellung der IP-Adresse (192.168.001.001) wird verwendet.
979	Das Gerät wird auf die Werkseinstellungen zurückgesetzt. Auch die Netzparameter werden auf die voreingestellten Werte zurückgesetzt. In diesem Betriebsmodus ist keine Kommunikation möglich.

Tabelle 12: Einstellen von Optionen der Drehkodierschalter für EtherNet/IP

7.5.2 Werkseinstellungen wiederherstellen

Beim Zurücksetzen auf die Werkseinstellungen werden die Original-Werkseinstellungen wiederhergestellt und somit die zum betreffenden Zeitpunkt vorgenommenen Änderungen und Einstellungen zurückgesetzt. Hierbei wird auch die Protokollauswahl zurückgesetzt. Um das Modul auf die Werkseinstellungen zurückzusetzen, setzen Sie den ersten Drehkodierschalter (x100) auf 9, den zweiten (x10) auf 7 und den dritten (x1) ebenfalls auf 9.

Führen Sie anschließend einen Neustart durch, und warten Sie 10 Sekunden, da im internen Speicher Schreibvorgänge ausgeführt werden.

Während dem Zurücksetzen auf die Werkseinstellungen, blinkt die U_S -LED rot. Nachdem die internen Speicher-Schreibprozesse abgeschlossen sind, kehrt die U_S -LED dazu zurück, konstant grün oder rot zu leuchten, abhängig von der tatsächlichen U_S -Spannung.

	x100	x10	x1
Factory Reset	9	7	9

Führen Sie die in Abschnitt Drehkodierschalter einstellen auf Seite 38 beschriebenen Schritte erneut aus, um ein neues Protokoll auszuwählen.

Für das Rücksetzen auf Werkseinstellungen via Software-Konfiguration, beachten Sie Kapitel OPC UA-Konfiguration auf Seite 118 und die Konfigurationskapitel.

8 Konfiguration EtherNet/IP

Die Geräte unterstützen *Implicit Messaging* und *Explicit Messaging* für die EthetNet/IP-Kommunikation. I/O-Prozessdaten werden zyklisch Assembly-Objektverbindung mittels *Implicit Messaging* übertragen.

Unkritische Daten mit niedriger Priorität, Konfigurationseinstellungen und Diagnosedaten können über azyklische Nachrichten mittels *Explicit Messaging* ausgetauscht werden. Der Austausch erfolgt über EtherNet/ IP und herstellerspezifische Objektklassen. Weitere Informationen zu Objektklassen entnehmen Sie dem Kapitel CIP-Objektklassen auf Seite 70.

8.1 Assembly-Typen

Die LioN-X-Geräte unterstützen drei unterschiedliche Assembly-Typen, die folgendermaßen aufgebaut sind:

Assembly-ID	Assembly-Name	Größe	Payload
130	Output Connection Point Assembly	4 Byte (16DIO, 8DI/DO) 0 Byte (16DI)	Consuming Data Image
131	Input Connection Point Assembly	8 Byte (16DIO, 8DI/DO) 6 Byte (16DI)	Producing Data Image
132	Input Connection Point Assembly with extended diagnosis	36 Byte (16DIO) 20 Byte (8DI/DO) 2 Byte (16DI)	Producing Data Image with extended diagnosis
140	Configuration Assembly	208 Byte	Module Configuration Data

Das Consuming Data Image und das Producing Data Image haben feste Größen, die von der Verbindung abhängig sind. Die allgemeinen Ein- und Ausgangs-Prozessdatengrößen jeder Verbindung können im Engineering-Tool konfiguriert werden.

Die Bestandteile des *Consuming Data Image* und des *Producing Data Image* werden in Kapitel Prozessdatenzuweisung auf Seite 58 näher erläutert.

Module Configuration Data werden in Kapitel Konfigurationsparameter auf Seite 48 näher erläutert.

8.2 Verbindungen

Die LioN-X-I/O-Module unterstützen vier verschiedene Verbindungstypen, die wie folgt definiert sind:

Verbin- dungs- name	Verbin- dungs-typ	Output- Verbin- dungs- punkt- Assembly	Output- Daten- größe	Input- Verbin- dungs- punkt- Assembly	Input- Daten- größe	Konfigu- rations- Assembly	Konfigu- rations- Daten- größe
16 DI/DO (Exclusive Owner)	Exclusive Owner	130	4 Byte	131	8 Byte	140	0 oder 208 Byte
16 DI (Input Only)	Input Only	193	0 Byte	131	8 Byte	140	0 oder 208 Byte
16 DI (Listen Only)	Listen Only	192	0 Byte	131	8 Byte	n/a	0 Byte
Extended Diagnoses (Input Only)	Input Only	192	0 Byte	132	36 Byte	140	0 oder 208 Byte

Die allgemeinen Ein- und Ausgangs-Prozessdatengrößen jeder Verbindung sind fest vorgegeben.

Einige Engineering-Tools erfordern die sofortige Konfiguration der Verbindungsparameter. Verwenden Sie für die Konfiguration die in den folgenden Kapiteln aufgeführten Parameter.

8.2.1 16 DI/DO (Exclusive Owner)-Parameter

Connection properties	
Connection name	16 DI/DO (Exclusive Owner)
Application type	Exclusive Owner
Trigger mode	Cyclic
RPI	min. 1 ms

Connection parameters (O->T)	
Real time transfer format	32 Bit Run/Idle Header
Connection type	POINT2POINT
Assembly ID	130
Data size	4 Byte
Data type	INT (2 Byte)

Connection parameters (T->O)	
Real time transfer format	Pure data and modeless
Connection type	MULTICAST, POINT2POINT
Assembly ID	131
Data size	8 Byte
Data type	INT (2 Byte)

8.2.2 16 DI (Input Only)-Parameter

Connection properties	
Connection name	16 DI (Input Only)
Application type	Input Only
Trigger mode	Cyclic
RPI	min. 1 ms

Connection parameters (O->T)	
Real time transfer format	Heartbeat
Connection type	POINT2POINT
Assembly ID	193
Data size	0 Byte
Data type	INT (2 Byte)

Connection parameters (T->0)		
Real time transfer format	Pure data and modeless	
Connection type	MULTICAST	
Assembly ID	131	
Data size	8 Byte	
Data type	INT (2 Byte)	

8.2.3 16 DI (Listen Only)-Parameter

Connection properties			
Connection name	16 DI (Listen Only)		
Application type	Listen Only		
Trigger mode	Cyclic		
RPI	min. 1 ms		

Connection parameters (O->T)			
Real time transfer format	Heartbeat		
Connection type	POINT2POINT		
Assembly ID	192		
Data size	0 Byte		
Data type	INT (2 Byte)		

Connection parameters (T->0)			
Real time transfer format	Pure data and modeless		
Connection type	MULTICAST		
Assembly ID	131		
Data size	8 Byte		
Data type	INT (2 Byte)		

8.2.4 Extended Diagnoses (Input Only)-Parameter

Connection properties	
Connection name	Extended Diagnoses (Input Only)
Application type	Input Only
Trigger mode	Cyclic
RPI	min. 1 ms

Connection parameters (O->T)			
Real time transfer format	Heartbeat		
Connection type	POINT2POINT		
Assembly ID	192		
Data size	0 Byte		
Data type	INT (2 Byte)		

Connection parameters (T->O)		
Real time transfer format	Pure data and modeless	
Connection type	MULTICAST	
Assembly ID	131	
Data size	8 Byte	
Data type	INT (36 Byte)	

9 Konfigurationsparameter

Parameter des LioN-X-Geräts können über die Assembly-Konfiguration, CIP-Objektklassen, Web-Server oder IIoT-Protokolle konfiguriert werden. Eine Assembly-Konfiguration wird gesendet, wenn eine *Exclusive Owner-*Verbindung hergestellt wurde. Sie sind in dieser Baugruppe optional. Beim Senden werden jedoch alle vorhandenen Parameter durch diese Daten überschrieben. Daher hat der Inhalt der Assembly-Konfiguration die höchste Wertigkeit.

Um ein Überschreiben der Parameter durch CIP-Objektklassen, Web-Serveroder IIoT-Protokolle während des Betriebs zu vermeiden, können einige Sperrparameter in der SPS-Konfiguration bzw. Konfigurationsbaugruppe aktiviert werden.

Bestimmte Konfigurationsparameter gelten nur für Digitale Ausgänge oder nur für Digitale Eingänge. Damit diese wirksam sind, muss der entsprechende Kanal über eine Ausgangs- oder Eingangsfunktionalität verfügen und auch entsprechend konfiguriert sein.

Konfigurationsparameter	Gültig für Kanalkonfiguration
Surveillance Timeout	DIO, Output
Failsafe	DIO, Output
Auto Restart	DIO, Output
Current Limit	DIO, Output
Input Filter Time	DIO, Input
Input Logic	DIO, Input

Die folgenden Kapitel stellen verschiedene Setting-Gruppen mit ihren Konfigurationsparametern dar. Sie sind Bestandteil der Assembly-Konfiguration und können über das *Explicit Messaging* der angegebenen CIP-Objektklassen eingestellt werden. Die **Standardwerte** sind hervorgehoben.

9.1 Allgemeine Einstellungen

Konfigurations- Parameter	Byte-Offset Konfig Assembly	Datentyp	Gültige Werte	CIP-Objektklasse 0xA0, Instanz 1
Quick connect	0	SINT	0: Disable 1: Enable	Attribute 1
Force Mode Lock	1	SINT	0: Disable 1: Enable	Attribute 2
Web Interface Lock	2	SINT	0: Disable 1: Enable	Attribute 3
Reserved	3	SINT	_	Attribute 4
Report U _L /U _{Aux} Supply Voltage Fault	4	SINT	0: Disable 1: Enable	Attribute 5
Report DO Fault without U _L /U _{Aux}	5	SINT	0: Disable 1: Enable	Attribute 6
CIP object configuration lock	24	SINT	0: Disable 1: Enable	Attribute 25
External configuration lock	25	SINT	0: Disable 1: Enable	Attribute 26

9.1.1 QuickConnect

QuickConnect (QC) ermöglicht es dem Modul, den Startvorgang schneller durchzuführen. Durch die Aktivierung dieses Parameters ist ein besonders schneller Start der EtherNet/IP-Kommunikation möglich.

Wenn Sie QuickConnect aktivieren, nimmt das LioN-X-Modul innerhalb von 350 ms nach dem Einschalten eine TCP-Verbindung an. Danach baut die Steuerung eine Verbindung auf. Das LioN-X Digital I/O-Modul erreicht eine Anlaufzeit von 400 bis 500 ms.

Um QuickConnect zu nutzen, muss das Netzwerk in einer Stern- oder Linientopologie aufgebaut sein und das LioN-X Digital I/O-Modul muss eine statische IP-Adresse haben. Ringtopologien und DHCP/BOOTP werden nicht unterstützt. Bitte beachten Sie, dass bei mehrfach vergebenen IP-Adressen innerhalb desselben Netzes keine automatische Prüfung erfolgt.

Wenn QuickConnect aktiviert ist, sind folgende Parameter für die Ethernet-Schnittstelle des LioN-X Digital I/O-Moduls fest eingestellt

- ▶ 100 Mbit/s Übertragungsgeschwindigkeit
- Vollduplex-Verbindung
- Autonegotiation und Auto-MDIX deaktiviert

Achtung: Voraussetzung für den Einsatz von QuickConnect ist die Einhaltung eines streng vorgeschriebenen Verfahrens. Die LioN-X Digital I/O-Module müssen vor dem Ausschalten (Inhibit-Befehl) und Einschalten (Uninhibit-Befehl) benachrichtigt werden. Ein hartes Abschalten während des Betriebs ist nicht zulässig. Details zu diesem Verfahren finden Sie in dem Dokument "ENET-AT001C-ENP" von Rockwell Automation.

9.1.2 Force mode lock

Die Input- und Output-Prozessdaten können über verschiedene Schnittstellen (z.B. Web-Interface, REST, OPC UA, MQTT) erzwungen werden. Die Unterstützung von Schnittstellen hängt von den verfügbaren Software-Features ab. Wenn Force mode lock aktiviert ist, können keine Input- und Output-Prozessdaten über diese Schnittstellen erzwungen werden.

Gefahr: Gefahr von Körperverletzung oder Tod! Unbeaufsichtigtes Forcing kann zu unerwarteten Signalen und unkontrollierten Maschinenbewegungen führen.

9.1.3 Web interface lock

Der Zugriff auf das Web-Interface kann eingestellt werden. Wenn *Web interface lock* aktiviert ist, sind die Web-Seiten nicht mehr erreichbar.

9.1.4 Report U_L/U_{AUX} supply voltage fault

Während der Inbetriebnahme ist es möglich, dass an den U_L/U_{AUX} -Pins keine Stromversorgung angeschlossen ist. Daher kann es hilfreich sein, die U_L/U_{AUX} supply voltage fault-Meldung zu unterdrücken und zu deaktivieren.

9.1.5 Report DO Fault without U_L/U_{Aux}

Mit diesem Parameter unterdrücken Sie die Aktoren-Diagnosemeldung, die gesendet wird, wenn keine U_L/U_{Aux} -Versorgung angeschlossen ist, während die Ausgangsdaten eines digitalen Kanals gesteuert werden.

9.1.6 CIP object configuration lock

Wenn keine *Exclusive Owner*-Verbindung eingerichtet ist, können alle Konfigurationsparameter durch herstellerspezifische CIP-Objektklassen eingestellt werden. Um Parameteränderungen auszuschließen kann die Einstellfunktion dieser Objekte blockiert werden.

Bei aktivierter *CIP object*-Konfigurationssperre können die herstellerspezifischen Parameter nicht über CIP-Dienste eingestellt werden. Dies betrifft auch die *CIP object*-Konfigurationssperre selbst. Ein Reset dieses Parameters kann über eine Konfigurationsgruppe durchgeführt werden, wenn eine *Exclusive Owner*-Verbindung eingerichtet wurde.

9.1.7 External configuration lock

Konfigurationsparameter können über verschiedene alternative Schnittstellen eingestellt werden (z.B. Web-Interface, REST, OPC UA, MQTT). Eine externe Konfiguration kann nur dann vorgenommen werden, solange keine zyklische SPS-Verbindung aktiv ist. Jede neue SPS-Konfiguration überschreibt die externen Konfigurationseinstellungen.

9.2 Kanaleinstellungen

Konfigurations- Parameter	Byte- Offset Konfig Assembly	Datentyp	Gültige Werte	CIP-Objektklasse 0xA0, Instanz 1 16
IO Mapping (Ch1 16)	32	SINT[16]	0 15 : Bit number of 16 channel process data 16: Inactive	Attribute 1
DO Surveillance Timeout (Ch1 16)	48	INT[16]	0 255 (80)	Attribute 2
DO Failsafe (Ch1 16)	80	SINT[16]	0: Set Low 1: Set High 2: Hold Last	Attribute 3
DO Restart Mode (Ch1 16)	96	SINT[16]	0: Disable 1: Enable	Attribute 4
DO Current Limit (Ch1 16)	112	SINT[16]	0: 0,5 A 1: 1,5 A 2: 1,5 A 3: 2,0 A 4: 2,0 A Max .	Attribute 5
DI Logic (Ch1 16)	128	SINT[16]	0: Normally Open 1: Normally Close	Attribute 6
DI Filter (Ch1 16)	144	SINT[16]	0: Disabled 1: 1 ms 2: 2 ms 3: 3 ms 4: 6 ms 5: 10 ms 6: 15 ms	Attribute 7

Konfigurations- Parameter	Byte- Offset Konfig Assembly	Datentyp	Gültige Werte	CIP-Objektklasse 0xA0, Instanz 1 16
Channel Mode (Ch1 16)	192	SINT[16]	0: Digital Input/Digital Output 1: Digital Output 2: Digital Input 3: Inactive Der unterstützte Channel Mode und der Standardwert sind von der jeweiligen Gerätevariante abhängig.	Attribute 10

Kanalzuordnung:

Channel 1	Port X1.ChA	CIP object instance 1	
Channel 2	Port X1.ChB	CIP object instance 2	
[]	[]	[]	
Channel 15	Port X8.ChA	CIP object instance 15	
Channel 16	Port X8.ChB	CIP object instance 16	

9.2.1 IO Mapping (Ch1 .. 16)

Diese Konfigurationsparameter können verwendet werden, um ein benutzerdefiniertes IO-Mapping festzulegen. Es ist für die Ein- und Ausgangsdatenrichtung gültig. Eine doppelte Zuordnung ist nicht zulässig. Im Falle eines inkonsistenten Mappings wird die gesamte Assembly-Konfiguration mit einem Fehlercode zurückgewiesen.

9.2.2 DO Surveillance Timeout (Ch1 .. 16)

Die digitalen Ausgabekanäle werden während der Laufzeit überwacht. Die Fehlerzustände werden erkannt und als Diagnose gemeldet. Um Fehlerzustände beim Schalten der Ausgangskanäle zu vermeiden, kann Surveillance Timeout mit Verzögerung und deaktivierter Überwachung konfiguriert werden.

Die Verzögerungszeit beginnt mit einer steigenden Flanke des Ausgangscontrol-Bits. Nach Ablauf der Verzögerungszeit wird der Ausgang überwacht und Fehlerzustände werden per Diagnose gemeldet. Wenn der Kanal dauerhaft ein- oder ausgeschaltet ist, beträgt der typische Filterwert (nicht veränderbar) 5 ms.

9.2.3 DO Failsafe (Ch1 .. 16)

Die LioN-X-Geräte unterstützen eine Failsafe-Funktion für die als digitale Ausgänge verwendeten Kanäle. Im Falle eines internen Gerätefehlers befindet sich die SPS im STOP-Zustand und kann keine gültigen Prozessdaten liefern. Die Verbindung wird unterbrochen oder die Kommunikation geht verloren. Die Ausgänge werden entsprechend den konfigurierten Failsafe-Werten angesteuert.

Set Low:

Wenn Failsafe aktiv ist, wird der physikalische Ausgangspin des Kanals auf "Low" ("0") gesetzt.

Set High:

Wenn Failsafe aktiv ist, wird der physikalische Ausgangspin des Kanals auf "High" ("1") gesetzt.

Hold Last:

Wenn Failsafe aktiv ist, hält der physikalische Ausgangspin des Kanals den letzten gültigen Prozessdatenstatus ("0" oder "1").

9.2.4 DO Restart Mode (Ch1 .. 16)

Im Falle eines Kurzschlusses oder einer Überlastung an einem Ausgangskanal wird eine Diagnose gemeldet und der Ausgang auf "off" geschaltet.

Wenn *DO Restart Mode* für diesen Kanal aktiviert ist, wird der Ausgang nach einer festen Zeitverzögerung automatisch wieder eingeschaltet, um zu prüfen, ob der Überlast- oder Kurzschlusszustand noch aktiv ist. Wenn er aktiv ist, wird der Kanal wieder abgeschaltet.

Wenn *DO Restart Mode* deaktiviert ist, wird der Ausgangskanal nicht automatisch wieder eingeschaltet. Er kann nach einem logischen Reset der Prozessausgabedaten des Kanals eingeschaltet werden.

9.2.5 DO Current Limit (Ch1 .. 16)

Ausschließlich verfügbar für folgende Gerätevarianten:

- 0980 XSL 3900-121-007D-01F
- 0980 XSL 3903-121-007D-01F

Mit diesem Parameter können Sie die Stromstärkenbegrenzung für die digitalen Ausgänge konfigurieren, indem Sie ein DO-Current-Limit wählen. Ausgangs-Switch-Modus:

► High-Side (U_L, 0.5 A..2.0 A max):

Wenn ein Kanal auf "High-Side" eingestellt ist, wird der Ausgang auf *aktiv* für "high", jedoch nicht für "low" gesetzt. Im "Low"-Zustand besitzt der Ausgang ein hohe Impedanz. Der digitale Ausgang wird über U_L oder U_{Aux}, abhängig von der Gerätevariante, versorgt und hat eine einstellbare Stromstärkenbegrenzung. Das bedeutet, dass eine Aktor-Kanal Fehlerdiagnose gemeldet wird, wenn das Limit überschritten wird. Wenn Sie *2.0 A Max.* einstellen, ist die Stromstärkenbegrenzung nicht aktiv und der maximale Ausgangsstrom ist verfügbar.

Beachten Sie das Kapitel I/O-Port-Übersicht auf Seite 17 für die verfügbare Spannungsversorgung der digitalen Ausgänge aller LioN-X-Varianten.

9.2.6 DI Logic (Ch1 .. 16)

Der logische Zustand eines Eingangskanals kann über diese Parameter konfiguriert werden. Wenn ein Kanal auf "Normally Open" eingestellt ist, wird ein Low-Signal ("0") an die Prozesseingangsdaten übertragen (z.B. wenn ein ungedämpfter Sensor einen offenen Schaltausgang hat).

Wenn ein Kanal auf "Normalerweise Close" eingestellt ist, wird ein High-Signal ("0") an die Prozesseingangsdaten übertragen (z.B. wenn ein ungedämpfter Sensor einen geschlossenen Schaltausgang hat).

Die Kanal-LED zeigt, unabhängig von diesen Einstellungen, den physikalischen Eingangszustand des Port-Pins an.

9.2.7 DI Filter (Ch1 .. 16)

Mit diesen Parametern kann eine Filterzeit für jeden digitalen Eingangskanal konfiguriert werden. Wenn ein Filter nicht benötigt wird, kann er deaktiviert werden.

9.2.8 Channel Mode (Ch1 .. 16)

Die Betriebsart jedes Kanals kann durch diese Parameter konfiguriert werden. Die Verwendbarkeit dieser Einstellung hängt von der Hardware-Variante ab und kann der Beschreibung entnommen werden (z.B. 16DIO, 16DI oder 8DI/8DO).

Digital Input/Digital Output:

In diesem Modus arbeitet der Kanal als digitaler Eingang/Ausgang. Der Kanal kann durch *Digital Output Channel Control* (die ersten zwei Bytes der Ausgangsdaten) gesteuert werden. Der Zustand des Kanals ist im *Digital Input Channel Status* der zyklischen Prozessdaten ersichtlich.

Digital Output:

In diesem Modus arbeitet der Kanal als digitaler Ausgang. Der Kanal kann durch die *Digital Output Channel Control* (die ersten zwei Bytes der Ausgangsdaten) gesteuert werden.

Digital Input:

In diesem Modus arbeitet der Kanal als digitaler Eingang. Der Zustand des Kanals ist im *Digital Input Channel Status* der zyklischen Prozessdaten ersichtlich.

Inactive:

Dieser Modus sollte gewählt werden, wenn der Kanal nicht in Gebrauch ist.

10 Prozessdatenzuweisung

LioN-X-Geräte unterstützen im Allgemeinen die Prozessdatenkommunikation in beide Richtungen. Als "consuming data" werden in diesem Zusammenhang die Prozessausgabedaten definiert, die die physikalischen Ausgänge steuern. Als "producing data" werden in diesem Zusammenhang die Prozesseingangsdaten definiert, die die physikalischen Eingänge, Diagnosen und optionale erweiterte Diagnosen enthalten.

In den folgenden Abschnitten werden die Daten-Images für die Datenrichtung von "consuming" und "producing data" beschrieben, die den Output- und Input-Assemblies zugeordnet sind.

10.1 Consuming data image (Output)

Output-Daten-Frame	Digitaler Output – Channel control	Reserviert (z.B. Feature control)	Digitale Output-Daten
"Consuming data"- Größe	2 Byte, INT	2 Byte, INT	4 Byte, INT

Der komplette *Output data frame* hat eine variable Größe von 4 Bytes. Im Allgemeinen geht ein 4 Byte Run/Idle Header voraus, was insgesamt bis zu 8 Bytes ergibt.

In den folgenden Kapiteln wird die Bit-Zuweisung beschrieben.

10.1.1 Digitaler Output - Channel control

Digital output channel control	Bit	7	6	5	4	3	2	1	0
Channel number (default mapping)	Byte 0	8	7	6	5	4	3	2	1
	Byte 1	16	15	14	13	12	11	10	9

Die Kontrollwerte sind wirksam, wenn die entsprechenden Kanäle als Ausgänge konfiguriert sind.

10.2 Producing data image (Input)

Input-Daten-	Digitaler Input –	Allgemeine	Sensor-Diagnose	Actuator/U _{Aux} -
Frame	Channel status	Diagnose		Diagnose
"Producing data"- Größe	2 Byte, INT	2 Byte, INT	2 Byte, INT	2 Byte, INT

Der komplette *Input data frame* besitzt eine feste Größe von 8 Bytes (6 Bytes für die 16DI-Variant.

In den folgenden Kapiteln wird die Bit-Zuweisung beschrieben.

10.2.1 Digitaler Input - Channel status

Digital input channel status	Bit	7	6	5	4	3	2	1	0
Channel number (default mapping)	Byte 0	8	7	6	5	4	3	2	1
	Byte 1	16	15	14	13	12	11	10	9

Jeder Statuswert ist wirksam, wenn der Kanal als Eingang konfiguriert ist.

10.2.2 Allgemeine Diagnose

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	Reserve	dReserve	dSCA	scs	LVA	LVS
	Byte 1	0	0	0	0	0	0	0	0

Low Voltage System/Sensor Supply

LVA Low Voltage Actuator Supply

SCS Short Circuit Sensor

SCA Short Circuit Actuator/U_L/U_{Aux}

FME Force Mode Enabled

IME Internal Module Error

0 reserviert

10.2.3 Sensor-Diagnose

Sensor diagnostics	Bit	7	6	5	4	3	2	1	0
Port number	Bvte 0	X8	X7	X6	X5	X4	Х3	X2	X1
	Byte 1	0	0	0	0	0	0	0	0

X1..8 Sensor-Kurzschluss an Port X1..X8

0 reserviert

10.2.4 Actuator/U_L/U_{Aux}-Diagnose

Actuator/U _{Aux} diagnostics	Bit	7	6	5	4	3	2	1	0
Channel number (fix)	Byte 0	8	7	6	5	4	3	2	1
	Byte 1	16	15	14	13	12	11	10	9

1 .. 16 Actuator/ U_L/U_{Aux} Kanalfehler an Kanal 1 .. 16

10.3 Producing data image (Extended diagnosis)

Input-Daten- Frame	U _S -Spannung	U _L -Spannung	DO-Stromstärke an Port (X1 X4)	DO-Stromstärke an Port (X5 X8)
"Producing data"- Größe	2 Byte, INT	2 Byte, INT	16 Byte, INT	16 Byte, INT

Der komplette *Input data frame* besitzt eine feste Größe von 36 Bytes für 16DIO-Varianten, 20 Bytes für 8DI/8DO-Varianten und 2 Bytes für 16DI-Varianten.

In den folgenden Kapiteln wird die Bit-Zuweisung beschrieben.

Byte-Offset	Input-Daten
0	U _S voltage (2 Bytes)
2	U _L voltage (2 Bytes)
4	DO current port (X1 X4) (16 Bytes)
20	DO current port (X5 X8) (16 Bytes)

10.4 Beispielanwendungen

Die folgenden Applikationsbeispiele beschreiben die Prozessdatenbelegung für die Ein- und Ausgangsdaten inklusive der Byte-Offsets. Wenn keine Notwendigkeit besteht, die Datengrößen zu konfigurieren, verwenden Sie das erste Beispiel, um die Standard-Byte-Offsets für Ihre Anwendung zu erhalten.

10.4.1 Prozessdaten-Images – standardmäßige Konfiguration

Die digitalen Eingangs- und Ausgangs-Datengrößen sind in den EDS-Files voreingestellt. Das bedeutet, Sie erhalten alle Daten von jedem digitalen Kanal. Die folgenden Tabellen bieten Ihnen eine Übersicht der Datenstrukturen und der Byte-Offsets für Eingangs- und Ausgangsdaten:

Verbindungsparameter

Ausgangs-Datengröße	4
Eingangs-Datengröße	8

Byte-Offset	Output-Daten
0	Digital output channel control (2 bytes)
2	Reserved (2 bytes)

Tabelle 13: Standardmäßige Ausgangs-Prozessdaten

Byte-Offset	Input-Daten
0	Digital input channel status (2 bytes)
2	General diagnostics (2 bytes)
4	Sensor diagnostics (2 bytes)
6	Actuator diagnostics (2 bytes)

Tabelle 14: Standardmäßige Eingangs-Prozessdaten

10.4.2 Prozessdaten-Images mit modifizierten Datengrößen

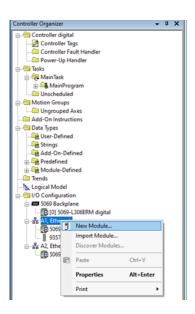
Die digitalen Eingangs- und Ausgangs-Datengrößen sind voreingestellt. Zusätzlich können Sie den Eingangsprozessdaten eine erweiterte Diagnosefunktion (Extended diagnosis) hinzufügen. Das bedeutet, Sie können darüber entscheiden, welche Daten auf die Prozessdaten abgebildet werden. Die folgenden Konfigurationstabellen bieten Ihnen ein Beispiel und eine Übersicht möglicher Datenstrukturen und Byte-Offsets für Eingangs- und Ausgangsdaten:

Verbindungsparameter

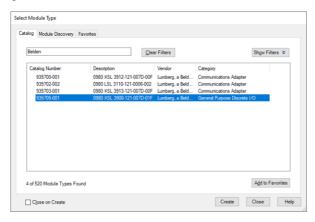
Ausgangs-Datengröße	4
Eingangs-Datengröße	44

Byte-Offset	Ausgangsdaten	Eingangsdaten
0	Digital output channel control (2 Bytes)	Digital input channel status (2 Bytes)
2	Reserved (2 Bytes)	General diagnostics (2 Bytes)
4	-	Sensor diagnostics (2 Bytes)
6	-	Actuator diagnostics (2 Bytes)
8	-	U _S voltage (2 Bytes)
10	-	U _L Voltage (2 Bytes)
12	-	DO current port X1 Ch. A (2 Bytes)
14	-	DO current port X1 Ch. B (2 Bytes)
16	-	DO current port X2 Ch. A (2 Bytes)
18	-	DO current port X2 Ch. B (2 Bytes)
20	-	DO current port X3 Ch. A (2 Bytes)
22	-	DO current port X3 Ch. B (2 Bytes)
24	-	DO current port X4 Ch. A (2 Bytes)
26	-	DO current port X4 Ch. B (2 Bytes)
28	-	DO current port X5 Ch. A (2 Bytes)
30	-	DO current port X5 Ch. B (2 Bytes)
32	-	DO current port X6 Ch. A (2 Bytes)
34	-	DO current port X6 Ch. B (2 Bytes)
36	-	DO current port X7 Ch. A (2 Bytes)
38	-	DO current port X7 Ch. B (2 Bytes)
40	-	DO current port X8 Ch. A (2 Bytes)
42	-	DO current port X8 Ch. B (2 Bytes)

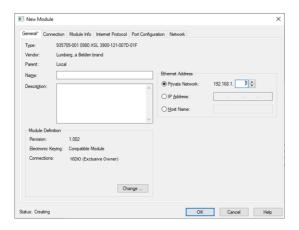
Tabelle 15: Modifizierte Prozessdaten

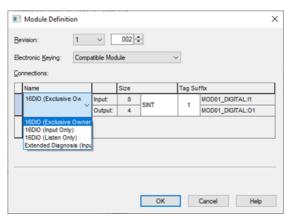

11 Konfiguration und Betrieb mit Rockwell Automation Studio 5000®

Die auf den folgenden Seiten beschriebene Konfiguration und Inbetriebnahme der LioN-X-Geräte bezieht sich auf Rockwell Automation Studio 5000®, V30. Wenn Sie ein Engineering-Tool eines anderen Anbieters verwenden, beachten Sie bitte die zugehörige Dokumentation.

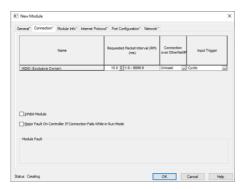

11.1 Grundlegende Inbetriebnahme

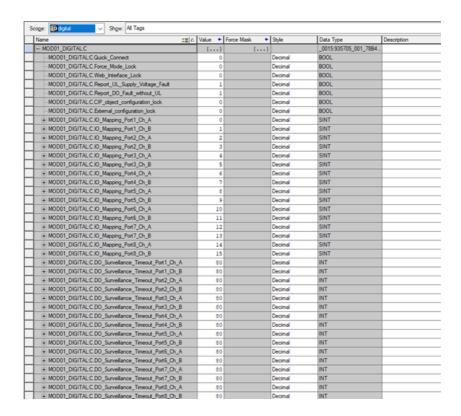
Führen Sie die folgenden Arbeitsschritte aus:


- 1. Erstellen Sie ein neues Projekt in Studio 5000®.
- 2. Wählen Sie den passenden Controller aus.
- **3.** Wenn keine integrierte EtherNet/IP-Schnittstelle verfügbar ist, fügen Sie unter **Controller Organizer** > **I/O-Configuration** die richtige Kommunikationsschnittstelle zu Ihrer Backplane hinzu..
- **4.** Legen Sie einen Kommunikationspfad fest, um das Herunterladen des Projekts zu ermöglichen.
- **5.** Installieren Sie die EDS_Dateien derLioN-X Geräte in Studio 5000[®] mit dem EDS-Hardware-Installations-Tool.
- **6.** Gehen Sie zu **Controller Organizer** > **I/O-Configuration** und Führen Sie einen Rechts-Klick auf **Ethernet** aus.

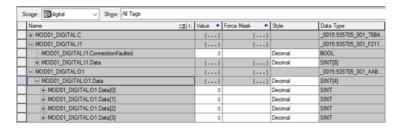

7. Wählen Sie **New Module** im Menü aus. Das folgende Auswahlfenster wird geöffnet:

- **8.** Verwenden Sie den **Module Type Vendor Filter** auf der rechten Seite, um alle installierten Geräte von Lumberg Automation[™] anzuzeigen.
- **9.** Wählen Sie das Gerät aus, das Sie hinzufügen möchten und klicken Sie auf **Create**.


- **10.** Geben Sie einen Namen für das Gerät ein und wählen Sie die zuvor gewählte IP-Adresse aus. In diesem Beispiel ist der Name **MOD01_IOL** und die IP-Adresse **192.168.1.1**.
- **11.** Klicken Sie auf **Change**, um die Einstellungen für die Geräterevision, die elektronische Codierung und die Verbindungsart zu ändern.


12. Wählen Sie den Verbindungstyp und konfigurieren Sie die Gesamtgrößen der Eingangs- und Ausgangsprozessdaten. Die Größen hängen von der Anzahl der angeschlossenen Geräte und deren Datenlängen in beiden Richtungen ab. Jede Eingangs- und Ausgangsdatengröße der Geräte muss auch später in der Port-Konfiguration festgelegt werden. Die Auswahl des

Datentyps bezieht sich auf den Typ, in dem Studio 5000[®] die Eingabe- und Ausgabedaten abbildet. Der standardmäßige Datentyp ist SINT. Der INT-Typ lässt sich auswählen, wenn jede Größe einem Vielfachen von 2 entspricht. Der DINT-Typ lässt sich auswählen, wenn jede Größe einem Vielfachen von 4 entspricht. Klicken Sie auf **OK**.


13. Im Ordner **Connection** unter **Module Properties** sehen Sie die ausgewählte Verbindung. In diesem Ordner können Sie auch das **Requested Packet Interval (RPI)** und den EtherNet/IP-Verbindungstyp definieren. Ein Wert von 1 ms ist das Minimum für den Parameter RPI, und es können die Verbindungstypen *Unicast* oder *Multicast* gewählt werden. Übernehmen Sie die Einstellungen.

14. Gehen Sie zu **Controller-Tags** in **Controller Organizer**. Die Controller-Tags für die Konfigurationsparameter enthalten den Gerätenamen, gefolgt von einem ":C". Die Konfigurationsparameter können unter **Value** eingestellt werden und sind im Kapitel Konfigurationsparameter auf Seite 48 näher beschrieben.

15. Der "Tag" der eingegebenen Prozessdaten enthält den Gerätenamen, gefolgt von einem ":I.Data". Die Ausgabe-Prozessdaten haben den gleichen Namen, gefolgt von einem ":O.Data". Beide Arrays zeigen die konfigurierten Datengrößen an. Ihr Inhalt wird im Kapitel Prozessdatenzuweisung auf Seite 58 näher beschrieben.

16. Wenn die Konfiguration abgeschlossen ist, können die Parameter in den EtherNet/IP-Controller heruntergeladen werden.

12 CIP-Objektklassen

12.1 EtherNet/IP-Objektklassen

Gemäß der CIP-Spezifikation unterstützen die LioN-X-Varianten die folgenden Standard-EtherNet/IP-Objektklassen:

Objektklasse	Objekt-ID	Instanzen	
Identity Object	0x01	0, 1	
Message Router Object	0x02	0 (only on class level)	
Assembly Object	0x04	0, 130, 131, 145	
Connection Manager Object	0x06	0 (only on class level)	
Discrete Input Point Object	0x08	0, 1 16	
DLR Object	0x47	0, 1	
QoS Object	0x48	0, 1	
TCP/IP Interface Object	0xF5	0, 1	
Ethernet Link Object	0xF6	0, 1 2	
LLDP Management Object	0x109	0, 1	

Alle Objekte mit Instance-Attributen werden in den folgenden Kapiteln beschrieben.

12.1.1 Identity Object (0x01)

Unterstützte Dienste:

Get Attributes All (0x01)

Reset (0x05): 0 = Reset Module (Warmstart), 1 = Reset to Factory Default Get Attribute Single (0x0E)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last class attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Instance-Attribut (Instanz 1)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Vendor ID	Get	UINT	Vendor Identification
2	Device Type	Get	UINT	Indication of general type of product
3	Product Code	Get	UINT	Identification of a particular product of an individual vendor
4	Revision	Get	USINT, USINT	Structure with major and minor revision
5	Status	Get	WORD	Summary status of device:
				b0: Owned
				b1: Reserved ("0")
				b2: Configured
				b3: Reserved ("0")
				b4 7: Extended Device Status
				0 = Self-Testing or Unknown
				1 = Firmware Update in Progress
				2 = At least one faulted I/O connection
				3 = No I/O connections established
				4 = Non-Volatile Configuration bad
				5 = Major Fault
				6 = At least one I/O connection in RUN mode
				7 = At least one I/O connection established, all in IDLE mode
				8 = Unused (valid only for instances grater than "1")
				9 = Reserved
				10 15 = Vendor specific
				b8: Minor Recoverable Fault
				b9: Minor Unrecoverable Fault
				b10: Major Recoverable Fault
				b11: Major Unrecoverable Fault
				b12 15: Reserved ("0")
6	Serial Number	Get	UDINT	Serial number of device
7	Product Name	Get	STRING	Human readable identification

Attribut	Name	Zugang	Datentyp	Beschreibung
8	State	Get	USINT	Present state of the device: 0 = Nonexistent 1 = Device Self Testing 2 = Standby 3 = Operational 4 = Major Recoverable Fault 5 = Major Unrecoverable Fault 6 254 = Reserved 255 = Default Value
9	Configuration Consistency Value	Get	UINT	Can be a CRC, incrementing count or any other mechanism (vendor specific behavior) to reflect a non-volatile configuration change
19	Protection Mode	Get	WORD	Current protection mode of the device: b0: Implicit Protection enabled b1 2: Reserved b3: Explicit Protection enabled b4 15: Reserved

12.1.2 Assembly Object (0x04)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
3	Number of Instances	Get	UINT	Number of Instances currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last class attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Instance-Attribut (Instanz <AssemblyID>)

Attribut	Name	Zugang	Datentyp	Beschreibung
3	Data	Get, Set	ARRAY	Assembly Data (Set service only available for consuming assemblies that are not part of an active implicit connection)
4	Size	Get	UINT	Number of bytes in Attribute 3

12.1.3 Discrete Input Point Object (0x08)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object

Instance-Attribut (Instanz 1 .. 16)

Attribut	Name	Zugang	Datentyp	Beschreibung
3	Value	Get	BOOL	Input Point Value (0 = OFF, 1 = ON)
4	Status	Get	BOOL	Input Point Status (0 = OK, 1 = Alarm)

12.1.4 DLR Object (0x47)

Unterstützte Dienste:

Get Attributes All (0x01)

Get Attribute Single (0x0E)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last class attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Instance-Attribut (Instanz 1)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Network Topology	Get	BOOL	0 = Linear 1 = Ring
2	Network Status	Get	BOOL	0 = Normal operation 1 = Ring Fault 2 = Unexpected Loop Detected 3 = Partial Network Fault 4 = Rapid Fault/Restore Cycle
10	Active Supervisor Address	Get	ARRAY	Supervisor IP Address, Supervisor MAC Address (0 = not configured)
12	Capability Flags	Get	DWORD	Flag description: b0: Announce-based Ring Node ("0") b1: Beacon-based Ring Node ("1") b2 4: Reserved ("0") b5: Supervisor Capable ("0") b6: Redundant Gateway Capable ("0") b7: Flush_Table frame Capable ("1") b8 15: Reserved ("0")

12.1.5 QoS Object (0x48)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last class attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Instance-Attribut (Instanz 1)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	802.1Q Tag Enable	Get, Set	USINT	Wird nicht unterstützt bei LioN-X Digital I/O-Modulen
2	DSCP PTP Event	Get, Set	USINT	DSCP value for PTP Event frames (default value "59")
3	DSCP PTP General	Get, Set	USINT	DSCP value for PTP General frames (default value "47")
4	DSCP Urgent	Get, Set	USINT	CIP transport class 0/1 messages with Urgent priority (default value "55")
5	DSCP Scheduled	Get, Set	USINT	CIP transport class 0/1 messages with Scheduled priority (default value "47")
6	DSCP High	Get, Set	USINT	CIP transport class 0/1 messages with High priority (default value "43")
7	DSCP Low	Get, Set	USINT	CIP transport class 0/1 messages with Low priority (default value "31")
8	DSCP Explicit	Get, Set	USINT	CIP UCMM, CIP transport class 2/3, All other EtherNet/IP encapsulation messages (default value "27")

12.1.6 TCP/IP Object (0xF5)

Unterstützte Dienste:

Get Attributes All (0x01)

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Instance-Attribut (Instanz 1)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Status	Get	DWORD	Interface Status description:
				b0 3: Interface Configuration Status
				0 = Not configured
				1 = Configuration obtained by BOOTP, DHCP or stored value
				2 = Configuration obtained by hardware settings (e.g. rotary switches)
				3 15 = Reserved
				b4: Mcast Pending
				b5: Interface Configuration Pending
				b6: Acd Status
				b7: Acd Fault
				b8 31: Reserved ("0")

Attribut	Name	Zugang	Datentyp	Beschreibung
2	Configuration Capability	Get	DWORD	Interface Capability Flags: b0: BOOTP Client ("1") b1: DNS Client ("0") b2: DHCP Client ("1") b3: DHCP-DNS Update ("0") b4: Configuration Settable ("1") b5: Hardware Configurable (0 = no rotary switches; 1 = rotary switches available) b6: Interface Configuration Change Requires Reset ("0") b7: Acd Capable ("1") b8 31: Reserved ("0")
3	Configuration Control	Get, Set	DWORD	Interface Control Flags: b0 3: Configuration Method: 0 = Stored Value 1 = BOOTP 2 = DHCP 315 = Reserved b4: DNS Enable ("0") b5 31: Reserved ("0")
4	Physical Link Object	Get	STRUCT	Path to physical link object
5	Interface Configuration	Get, Set	STRUCT	TCP/IP network interface configuration
6	Host Name	Get, Set	STRING	Host name of the device (length of 0 = not configured)
10	Select Acd	Get, Set	BOOL	Enables ("1") or disables ("0") the use of ACD (default value "1")
11	Last Conflict Detected	Get, Set	STRUCT	Structure containing information related to the last conflict detected
13	Encapsulation Inactivity Timeout	Get, Set	UINT	Number of seconds of inactivity before TCP connection is closed: 0 = disable 1 3600 = timeout in seconds 120 = default value

12.1.7 Ethernet Link Object (0xF6)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Get and Clear (0x4C)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.
3	Number of Instances	Get	UINT	Number of object instances currently created at this class level of the device (in this case number of ethernet ports)

Instance-Attribut (Instanz 1 .. 2)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Interface Speed	Get	UDINT	Current Interface speed in Mbps
2	Interface Flags	Get	DWORD	Interface Flags: b0: Link Status b1: Half ("0") or Full ("1") Duplex b2 4: Negotiation Status: 0 = Auto-negotiation in progress 1 = Auto-negotiation and speed detection failed (using default 10Mbps and half duplex) 2 = Auto negotiation failed but detected speed (using default half duplex) 3 = Successfully negotiated speed and duplex 4 = Auto-negotiation not attempted (forced speed and duplex) b5: Manual Setting Requires Reset b6: Local Hardware Fault b7 31: Reserved ("0")
3	Physical Address	Get	ARRAY	MAC address
4	Interface Counters	Get	STRUCT	Interface Counters
5	Media Counters	Get	STRUCT	Media-specific counters
6	Interface Control	Get, Set	STRUCT	Configuration for physical interface Control Bits (WORD): b0: Auto-negotiate b1: Forced Duplex Mode (0 = Half Duplex; 1 = Full Duplex, only valid when Auto-negotiate = 0) b2 15: Reserved ("0") Forced Interface Speed in Mbps (UINT)

Attribut	Name	Zugang	Datentyp	Beschreibung
7	Interface Type	Get	USINT	Type of interface: 0 = Unknown interface type 1 = Internal interface 2 = Twisted-pair 3 = Optical fiber 4 255 = Reserved
8	Interface State	Get	USINT	State of interface: 0 = Unknown 1 = Enabled and ready to send and receive data 2 = Disabled 3 = Testing 4 255 = Reserved
9	Admin State	Get, Set	USINT	Administrative state: 0 = Reserved 1 = Enable interface 2 = Disable interface 3 255 = Reserved
10	Interface Label	Get	STRING	Human readable identification (size max. 64)
11	Interface Capability	Get	STRUCT	Interface Capability Flags (DWORD): b0: Manual Setting Requires Reset ("0") b1: Auto-negotiate ("1") b2: Auto-MDIX ("1") b3: Manual Speed/Duplex ("1") b4 31: Reserved ("0") Speed/Duplex Array Count of following struct (USINT, 4) Interface Speed in Mbps (UINT, 10/100) Interface Duplex Mode (USINT, 0/1): 0 = Half Duplex 1 = Full Duplex 2 255 = Reserved

12.1.8 LLDP Management Object (0x109)

Unterstützte Dienste:

Get Attributes All (0x01)

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.
3	Number of Instances	Get	UINT	Number of object instances currently created at this class level of the device (in this case number of ethernet ports)
6	Maximum ID Number Class Attributes	Get	UINT	Attribute ID number of the last class attribute
7	Maximum ID Number Instance Attributes	Get	UINT	Attribute ID number of the last class attribute

Instance-Attribut (Instanz 1)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	LLDP Enable	Get/Set	STRUCT	LLDP Enable Array Length (UINT): 1 + Class attribute 2 from the Ethernet Link Object (0xF6) = 3
				LLDP Enable Array (BYTE):
				b0: Global Enable, LLDP Tx & Rx Enabled (1)
				b1: LLDP Tx Enabled (Intance 1 of Ethernet Link Object) (1)
				b2: LLDP Tx Enabled (Intance 2 of Ethernet Link Object) (1)
2	msgTxInterval	Get/Set	UINT	From 802.1AB-2016: Interval in seconds for transmitting LLDP frames from this device
				0 4 = Reserved
				5 32768 = Message Transmission Interval for LLDP frames (30)
				32769 65535 = Reserved
3	msgTxHold	Get/Set	USINT	From 802.1AB-2016: Multiplier of msgTxInterval to determine the value of the TTL TLV sent to neighboring devices
				0 = Reserved
				1 100 = Message Transmission Multiplier for LLDP Frames (4)
				101 255 = Reserved
4	LLDP Datastore	Get	WORD	Indication of the retrieval methods for the LLDP database:
				b0: LLDP Data Table Object (0)
				b1: SNMP (1)
				b2: NETCONF YANG (0)
				b3: RESTCONF YANG (0)
				b4 b15: Reserved (0)
5	Last Change	Get	UDINT	Counter in seconds from the last time any entry in the local LLDP database changed or power up

12.2 Herstellerspezifische Objektklassen

Die LioN-X EtherNet/IP-Varianten unterstützen die folgenden herstellerspezifischen Objektklassen:

Objektklasse	Instanzen
General Settings Object (0xA0)	0, 1
Channel Settings Object (0xA1)	0, 1 16 [*]

^{*)} Die verfügbaren Instanzen hängen von der Anzahl der digitalen Kanäle der Gerätevariante ab. Es werden bis zu 16 digitale Kanäle und Instanzen unterstützt.

12.2.1 General Settings Object (0xA0)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Instance-Attribut (Instanz 1)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Quick Connect	Get, Set	BOOL	0: Disable
				1: Enable
2	Force Mode Lock	Get, Set	BOOL	0: Disable
				1: Enable
3	Web Interface	Get, Set	BOOL	0: Disable
	Lock			1: Enable
4	Reserved	Get	SINT	_
5	Report UL/UAux	Get, Set	BOOL	0: Disable
	Supply Voltage Fault			1: Enable
6	Report DO Fault	Get, Set	BOOL	0: Disable
	without UL/UAux			1: Enable
7 24	Reserved	Get	SINT	_
25	CIP object	Get, Set	BOOL	0: Disable
	configuration lock			1: Enable
26	External	Get, Set	BOOL	0: Disable
	configuration lock			1: Enable
27 32	Reserved	Get	SINT	-

12.2.2 Channel Settings Object (0xA1)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

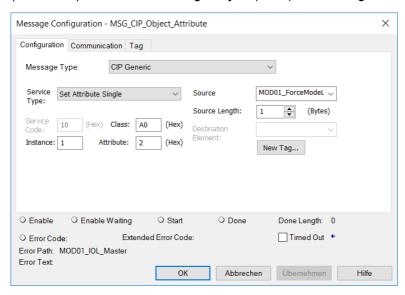
Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Instance-Attribute (Instanz 1 .. 16)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	I/O Mapping	Get, Set	SINT	0 15: Bit number of 16 channel process data 16: Inactive
2*	DO Surveillance Timeout	Get, Set	INT	0 255
3*	DO Failsafe	Get, Set	SINT	0: Set Low 1: Set High 2: Hold Last
4*	DO Restart Mode	Get, Set	SINT	0: Disable 1: Enable
5*	DO Switch Mode	Get, Set	SINT	0: High-Side (U _L , 0.5 A) 1: High-Side (U _L , 1.0 A) 2: High-Side (U _L , 1.5 A) 3: High-Side (U _L , 2.0 A) 4: High-Side (U _L , 2.0 A max)
6**	DI Logic	Get, Set	SINT	0: Normally Open 1: Normally Close

Attribut	Name	Zugang	Datentyp	Beschreibung
7**	DI Filter	Get, Set	SINT	0: Disabled
				1: 1 ms
				2: 2 ms
				3: 3 ms
				4: 6 ms
				5: 10 ms
				6: 15 ms
89	Reserved			
10	Channel Mode	Get, Set	SINT	0: Digital Input/Output
				1: Digital Output
				2: Digital Input
				3: Inactive
				Der unterstützte Channel Mode ist von der jeweiligen Gerätevariante abhängig.

^{*} Ausschließlich verfügbar für DO-Kanäle.


Information zu den Ports finden Sie unter I/O-Port-Übersicht auf Seite 17.

^{**} Ausschließlich verfügbar für DI-Kanäle.

12.3 "Message"-Konfiguration in Rockwell Automation Studio 5000®

Attribute von CIP-Objektklassen können in Rockwell Automation Studio 5000® mit der *Message instruction* bearbeitet werden. Dies erfordert die Auswahl des richtigen Message- und Service-Typs mit dem entsprechenden Service-Code. Die Attribute werden als *Get* oder *Set* in den CIP-Objektklassen-ID, die Instanz-ID und die Attribut-ID definiert. Die entsprechenden Daten werden in den vorhergehenden Kapiteln beschrieben.

Die folgende Abbildung zeigt ein Beispiel -Setting für das Force Mode Lock (Attribute 2) des General Settings Object (0xA0) mit Message instruction:

Die Kanäle wie im *Channel Settings Object* werden jeweils in aufsteigender Reihenfolge einer Instanz-ID zugeordnet.

Kanal-Zuweisung:

Channel 1	Port X1.ChA	CIP object instance 1
Channel 2	Port X1.ChB	CIP object instance 2
[]	[]	[]
Channel 15	Port X8.ChA	CIP object instance 15
Channel 16	Port X8.ChB	CIP object instance 16

13 Diagnosebearbeitung

13.1 Fehler der System-/Sensorversorgung

Die Höhe des Spannungswertes eingehender System-/Sensorversorgung wird global überwacht. Ein Unterschreiten der Spannung unter ca. 18 V, bzw. ein Überschreiten der Spannung über ca. 30 V erzeugt eine Fehlerdiagnose. Mindestens 21 V an U_S Spannungsversorgung für das Digital-I/O-Modul sind erforderlich, um das Risiko interner Spannungsabfälle im Modul.

Die grüne U_S-Anzeige-LED erlischt.

Die Fehlerdiagnose hat keine Auswirkungen auf die Ausgänge.

Vorsicht: Es muss in jedem Fall sichergestellt sein, dass die Versorgungsspannung, gemessen am entferntesten Teilnehmer, aus Sicht der Systemstromversorgung 21 V nicht unterschreitet.

Die folgende Diagnose wird im "producing" Daten-Image erzeugt:

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	Reserve	dReserve	dSCA	scs	LVA	LVS
	Byte 1	0	0	0	0	0	0	0	0

LVS

Low Voltage System/Sensor Supply

Low Voltage Actuator Supply

SCS

Short Circuit Sensor

SCA

Short Circuit Actuator/U_I /U_{AUX}

13.2 Fehler der Auxiliary-/ Aktuatorversorgung

Die Höhe des Spannungswertes der eingehenden Auxiliary-/ Aktuatorversorgung wird global überwacht. Bei aktivierter Report U_L/U_{AUX} Supply Voltage Fault-Diagnose wird bei unterschreiten der Spannung unter ca. 18 V oder Überschreiten der Spannung über ca. 30 V eine Diagnose erzeugt. Die Anzeige U_L/U_{AUX} leuchtet rot auf.

Wenn Ausgangskanäle auf *High State* und *Report DO Fault without U_L/U_{AUX}* eingestellt sind, werden weitere durch den Spannungsfehler verursachte Fehlermeldungen an den Kanälen erzeugt.

Die folgende Diagnose wird im *producing data image* erzeugt:

Actuator/U _{AUX} diagnostics	Bit	7	6	5	4	3	2	1	0
Channel number	Byte 0	8	7	6	5	4	3	2	1
(fix)	Byte 1	16	15	14	13	12	11	10	9

1..16

Actuator/ U_L/U_{AUX} Kanalfehler an Kanal 1 .. 16

Wenn Report U_L/U_{AUX} Supply Voltage Fault deaktiviert ist, treten keine U_L/U_{AUX} - oder Kanal-Diagnosen auf.

13.3 Überlast/Kurzschluss der I/O-Port-Sensorversorgungsausgänge

Bei einer Überlast oder einem Kurzschluss zwischen Pin 1 und Pin 3 der Ports (X1 .. X8) werden folgende kanalspezifische Diagnosen im *producing data image* erzeugt:

Sensor diagnostics	Bit	7	6	5	4	3	2	1	0
Port number	Byte 0	X8	X7	Х6	X5	X4	Х3	X2	X1
	Byte 1	0	0	0	0	0	0	0	0

X1 .. 8

Sensor-Kurzschluss an Port X1 .. X8

13.4 Überlast/Kurzschluss der digitalen Ausgänge

Im Falle einer Überlastung oder eines Kurzschlusses eines Ausgangskanals werden folgende kanalspezifische Diagramme im *producing data image* erzeugt:

Actuator/U _{AUX} diagnostics	Bit	7	6	5	4	3	2	1	0
Channel number (fix)	Byte 0	8	7	6	5	4	3	2	1
	Byte 1	16	15	14	13	12	11	10	9

1...16

Actuator/U_L/U_{AUX} channel error on channel 1 .. 16

Die Ermittlung eines Kanalfehlers erfolgt durch einen Vergleich zwischen dem von einer Steuerung gesetzten Sollwert und dem Physikalischen Wert eines Ausgangskanals.

Bei der Aktivierung eines Ausgangskanals (steigende Flanke des Kanalzustands) erfolgt die Filterung der Kanalfehler für die Dauer, die über den Parameter "Surveillance Timeout" bei der Konfiguration des Geräts festgelegt wurde. Der Wert dieses Parameters umfasst einen Bereich von 0 bis 255 ms, die Werkseinstellung ist 80 ms.

Der Filter dient zur Vermeidung von vorzeitigen Fehlermeldungen bei Einschalten einer kapazitiven Last oder Ausschalten einer induktiven Last sowie anderer Spannungsspitzen während einer Statusänderung.

Im statischen Zustand des Ausgangskanals, während dieser also dauerhaft eingeschaltet ist, beträgt die Filterzeit zwischen Fehlererkennung und Diagnose typischerweise 5 ms.

14 IIoT-Funktionalität

Die LioN-X-Gerätevarianten bieten eine Vielzahl neuer Schnittstellen und Funktionen für die optimale Integration in bestehende oder zukünftige IIoT (Industrial Internet of Things)-Netzwerke. Die Geräte fungieren weiterhin als Feldbus-Geräte, die mit einer SPS (Speicherprogrammierbare Steuerung) kommunizieren und auch von dieser gesteuert werden können.

Zusätzlich bieten die Geräte gängige IIoT-Schnittstellen, welche neue Kommunikationskanäle neben der SPS ermöglichen. Die Kommunikation wird über die IIoT-relevanten Protokolle MQTT und OPC UA ausgeführt. Mit Hilfe dieser Schnittstellen können nicht nur alle Informationen in einem LioN-X-Gerät gelesen werden. Sie ermöglichen auch deren Konfiguration und Kontrolle, wenn der Benutzer dies wünscht. Alle Schnittstellen können weitreichend konfiguriert werden und bieten eine Read-Only-Funktionalität.

Alle LioN-X-Varianten bieten die Nutzer-Administration, welche auch für den Zugriff und die Kontrolle auf die IIoT-Protokolle verfügbar ist. Dies erlaubt Ihnen, alle Modifikations-Optionen für die Geräte-Einstellungen über personalisierte Nutzer-Autorisierung zu verwalten.

Alle IIoT-Protokolle können unabhängig vom Feldbus genutzt und konfiguriert werden. Ebenso ist es möglich, die Geräte komplett ohne die Hilfe einer SPS zu verwenden und diese stattdessen über IIoT-Protokolle zu steuern.

Achtung: Wenn Sie die IIoT-Funktionalität verwenden, empfiehlt sich eine gesicherte lokale Netzwerk-Umgebung ohne direkten Zugang zum Internet.

14.1 MQTT

Das MQTT (Message Queueing Telemetry Transport)-Protokoll ist ein ofenes Netzwerkprotokoll für Maschine-zu-Maschine-Kommunikation, welches die Übermittlung telemetrischer Daten-Meldungen zwischen Geräten liefert. Der integrierte MQTT-Client erlaubt es dem Gerät, ein spezifisches Set an Informationen an einen MQTT-Broker zu veröffentlichen.

Die Veröffentlichung der Meldungen kann entweder periodisch auftreten oder manuell getriggert werden.

14.1.1 MQTT-Konfiguration

Im **Auslieferungszustand** sind die MQTT-Funktionen **deaktiviert**. Der MQTT-Client kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel MQTT-Konfiguration - Schnellstart-Anleitung auf Seite 116.

Die Konfigurations-URL lautet:

http://[ip-address]/w/config/mqtt.json

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

http://[ip-address]/r/config/mqtt.json

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
mqtt-enable	boolean	Master switch for the MQTT client.	true / false
broker	string	IP address of the MQTT Broker	"192.168.1.1"
login	string	Username for MQTT Broker	"admin" (Default: null)
password	string	Password for MQTT Broker	"private" (Default: null)
port	number	Broker port	1883
base-topic	string	Base topic	"iomodule_[mac]" (Default: " lionx ")
will-enable	boolean	If true, the device provides a last will message to the broker	true / false
will-topic	string	The topic for the last will message.	(Default: null)
auto-publish	boolean	If true, all enabled domains will be published automatically in the specified interval.	true / false
publish-interval	number	The publish interval in ms if autopublish is enabled. Minimum is 250 ms.	2000
publish-identity	boolean	If true, all identity domain data will be published	true / false
publish-config	boolean	If true, all config domain data will be published	true / false
publish-status	boolean	If true, all status domain data will be published	true / false
publish-process	boolean	If true, all process domain data will be published	true / false
commands-allowed	boolean	Master switch for MQTT commands. If false, the device will not subscribe to any command topic, even if specific command topics are activated below.	true / false
force-allowed	boolean	If true, the device accepts force commands via MQTT.	true / false
reset-allowed	boolean	If true, the device accepts restart and factory reset commands via MQTT.	true / false
config-allowed	boolean	If true, the device accepts configuration changes via MQTT.	true / false

Element	Datentyp	Beschreibung	Beispieldaten
qos	number	for all published messages.	0 = At most once 1 = At least once 2 = Exactly once

Tabelle 16: MQTT-Konfiguration

MQTT-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt.

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

- ► Ein nicht wohlgeformtes JSON-Objekt verursacht einen Fehler.
- Nicht existierende Parameter verursachen einen Fehler.
- ▶ Parameter mit falschem Datentyp verursachen einen Fehler.

Es ist nicht erlaubt alle verfügbaren Parameter auf einmal zu schreiben. Sie sollten nur einen oder eine geringe Anzahl an Parametern auf einmal schreiben.

Beispiele:

```
{"status": -1, "error": [{"Element": "publish-interval", "Message": "Integer
expected"}]}
{"status": 0}
{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

Für mehr Informationen, beachten Sie das Kapitel MQTT-Topics auf Seite 101.

14.1.2 MQTT-Topics

MQTT bezieht sich hauptsächlich auf Topics. Alle Meldungen werden einem Topic angehängt, welches der Nachricht selbst Kontext hinzufügt. Topics können aus einem String bestehen und dürfen Schrägstriche (/) beinhalten. Topic-Filter können außerdem Wildcard-Symbole wie z.B. (#) beinhalten.

14.1.2.1 Base-Topic

Für alle LioN-X-Varianten gibt es ein konfigurierbares Base-Topic, welches das Präfix für alle Topics darstellt. Das Base-Topic kann vom Nutzer frei gewählt werden. Das Base-Topic kann ebenfalls ausgewählte Variablen beinhalten, wie in Tabelle 17: Base-Topic-Variablen auf Seite 101 gezeigt.

Variablen im Base-Topic müssen in eckigen Klammern ("[]") geschrieben werden. Die folgenden Variablen sind möglich:

Variable	Beschreibung
mac	The MAC address of the device
name	The name of the device
order	The ordering number of the device
serial	The serial number of the device
ip0	IP-Adresse Oktett
ip1	
ip2	
ip3	

Tabelle 17: Base-Topic-Variablen

Beispiel:

Das Base-Topic "io_[mac]" wird in "io_A3B6F3F0F2F1" übersetzt.

Alle Daten sind in Domains organisiert. Der Domain-Name ist das erste Level im Topic nach dem Base-Topic. Beachten Sie folgende Schreibweise:

Base-Topic/domain/....

Es gibt folgende Domains:

Domain-Name	Definition	Beispielinhalt
identity	All fixed data which is defined by the used hardware and which cannot be changed by configuration or at runtime.	Device name, ordering number, MAC address, port types, port capabilites and more.
config	Configuration data which is commonly loaded once at startup, mostly by a PLC.	IP address, port modes, input logic, failsafe values and more.
status	All (non-process) data which changes quite often in normal operation.	Bus state, diagnostic information, Device status and data.
process	All process data which is produced and consumed by the device itself or by attached devices.	Digital inputs, digital outputs, cyclic data.

Tabelle 18: Daten-Domains

Oft gibt es ein Topic für alle Gateway-bezogenen Informationen und Topics für jeden Port. Alle Identity-Topics werden nur einmal beim Gerätestart veröffentlicht, da diese Information statisch sein sollte. Alle anderen Topics werden, abhängig von ihrer Konfiguration, entweder in einem festen Intervall veröffentlicht oder manuell ausgelöst.

Topic	Beispielinhalt	Veröffent- lichungs- Zähler gesamt	Veröffent- lichungs- Intervall
[base-topic]/identity/ gateway	Name, ordering number, MAC, vendor, I&M etc.	1	Startup
[base-topic]/identity/ port/n	Port name, port type	8	Startup
[base-topic]/config/ gateway	Configuration parameters, ip address etc.	1	Interval
[base-topic]/config/port/ n	Port mode, data storage, mapping, direction	8	Interval
[base-topic]/status/ gateway	Bus state, device diagnosis, master events	1	Interval
[base-topic]/status/port/ n	Port or channel diagnosis, state	8	Interval
[base-topic]/process/ gateway	All Digital IN/OUT	1	Interval
[base-topic]/process/ port/n	Digital IN/OUT per port, pdValid	8	Interval

Tabelle 19: Datenmodell

Ein MQTT-Client, der eines oder mehrere dieser Topics abonnieren möchte, kann auch Wildcards verwenden.

Gesamtes Topic	Beschreibung
[base-topic]/identity/gateway	Receive only indentity objects for the gateway
[base-topic]/identity/#	Receive all data related to the identity domain
[base-topic]/status/port/5	Receive only status information for port number 5
[base-topic]/+/port/2	Receive information of all domains for port number 2
[base-topic]/process/port/#	Receive only process data for all ports
[base-topic]/config/#	Receive config data for the gateway and all ports.

Tabelle 20: Anwendungsbeispiele

14.1.2.2 Publish-Topic

Übersicht über alle Publish-JSON-Daten für die definierten Topics:

Identity/gateway	
Eingabe	Datentyp
product_name	json_string
ordering_number	json_string
device_type	json_string
serial_number	json_string
mac_address	json_string
production_date	json_string
fw_name	json_string
fw_date	json_string
fw_version	json_string
hw_version	json_string
family	json_string
location	json_string
country	json_string
fax	json_string
vendor_name	json_string
vendor_address	json_string
vendor_phone	json_string
vendor_email	json_string
vendor_techn_support	json_string
vendor_url	json_string
vendor_id	json_integer
device_id	json_integer

Tabelle 21: Identity/gateway

Config/gateway							
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen			
fieldbus_protocol	json_string	PROFINET EtherNet/IP EtherCAT® Modbus TCP CC-Link IE Field Basic					
network_configuration	json_string	PROFINET: DCP Manual EtherNet/IP: Manual Rotary DHCP EtherCAT®: Manual Modbus TCP: Manual DHCP Rotary CC-Link IE Field Basic: Manual Rotary					
rotary_switches	json_integer	0 999					
ip_address	json_string		192.168.1.1				
subnet_mask	json_string		255.255.255.0				
report_ul_alarm	json_boolean	true / false	true				
report_do_fault_without_ul	json_boolean	true / false	false				
force_mode_lock	json_boolean	true / false	false				
web_interface_lock	json_boolean	true / false	false				

Config/gateway						
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen		
fast_startup	json_boolean	true / false	false	PROFINET and EIP only		

Tabelle 22: Config/gateway

Status/gateway Status/gateway						
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen		
protocol	json_string	PROFINET: UNKNOWN OFFLINE STOP IDLE OPERATE EtherNet/IP: CONNECTED DISCONNECTED EtherCAT®: PREOP SAFEOP OP INIT UNKNOWN Modbus TCP: No Connections Connected CC-Link IE Feld Basic: ON STOP DISCONNECTED				
system_voltage_fault	json_boolean	true / false				
actuator_voltage_fault	json_boolean	true / false				
internal_module_error	json_boolean	true / false				
simulation_active_diag	json_boolean	true / false				
us_voltage	json_integer	0 32		in Volts		
ul_voltage	json_integer	0 32		in Volts		
forcemode_enabled	json_boolean	true / false				

Tabelle 23: Status/gateway

Process/gateway						
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen		
Input_data	json_integer[]					
output_data	json_integer[]					

Tabelle 24: Process/gateway

Identity/port/1 8	Identity/port/1 8				
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen	
port	json_integer	18			
type	json_string	Digital Input DIO Digital Output DIO Pin 4 Only DI Pin 4 Only DO Pin 4 Only Not available Unknown			
max_output_power_cha	json_string	2.0_mA 0.5_mA			
max_output_power_chb	json_string	2.0_mA 0.5_mA			
channel_cha	json_string	Digital Input Digital Output DIO Digital Input/Output Auxiliary Power Auxiliary with DO Not available Unknown			
channel_chb	json_string	Digital Input Digital Output DIO Digital Input/Output Auxiliary Power Auxiliary with DO Not available Unknown			

Tabelle 25: Identity/port/1 .. 8

Config/port/1 8				
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
port	json_integer	18		
direction_cha	json_string	Output Input Inactive Auxiliary Power DIO Unknown		
direction_chb	json_string	Output Input Inactive Auxiliary Power DIO Unknown		
restart_mode_cha	json_string	Manual Auto		
restart_mode_chb	json_string	Manual Auto		
input_polarity_cha	json_string	NO NC		
input_polarity_chb	json_string	NO NC		
input_filter_cha	json_integer			ms
input_filter_chb	json_integer			ms
do_auto_restart_cha	json_boolean	true / false		
do_auto_restart_chb	json_boolean	true / false		
failsafe_cha	json_string	set_low set_high hold_last	set_low	
failsafe_chb	json_string	set_low set_high hold_last	set_low	
surveillance_timeout_cha	json_integer	0 255	80	

Config/port/1 8					
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen	
surveillance_timeout_chb	json_integer	0 255	80		
io_mapping_cha	json_integer	0 15	channel number	16DIO only	
io_mapping_chb	json_integer	0 15	channel number	16DIO only	

Tabelle 26: Config/port/1 .. 8

Status/port/1 8					
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen	
port	json_integer	18			
physical_state_cha	json_integer	0 1			
physical_state_chb	json_integer	0 1			
actuator_short_circuit_cha	json_boolean	true / false			
actuator_short_circuit_chb	json_boolean	true / false			
sensor_short_circuit	json_boolean	true / false			
current_cha	json_integer			mA	
current_chb	json_integer			mA	
current_pin1	json_integer			mA	

Tabelle 27: Status/port/1 .. 8

14.1.2.3 Command-Topic (MQTT Subscribe)

Der Hauptzweck von MQTT ist das Publizieren von Gerätedaten an einen Broker. Diese Daten können von allen registrierten Abonnenten (Subscriber) bezogen werden, die daran interessiert sind. Andersherum ist es aber auch möglich, dass das Gerät selbst ein Topic auf dem Broker abonniert hat und dadurch Daten erhält. Diese Daten können Konfigurations- oder Forcing-Daten sein. Dies erlaubt dem Nutzer die vollständige Kontrolle eines Gerätes ausschließlich via MQTT, ohne die Verwendung anderer Kommunikationswege wie Web oder REST.

Wenn die Konfiguration grundsätzlich Commands zulässt, abonniert das Gerät spezielle Command-Topics, über die es Befehle anderer MQTT-Clients erhalten kann. Das Command-Topic basiert auf dem Base-Topic. Es hat immer die folgende Form:

[base-topic]/command

Nach dem Command-Topic stehen feste Topics für verschiedene schreibbare Objekte. Das Datenfomat der MQTT-Payload ist immer JSON. Es besteht die Möglichkeit, auch nur ein Subset der möglichen Objekte und Felder einzustellen.

[...]/forcing

Verwenden Sie das Command-Topic [base-topic]/command/forcing für *Force object*-Daten. Das *Force object* kann jede der folgenden Eigenschaften besitzen:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
forcemode	boolean	true / false	Forcing Authority: on/off
digital	array (Tabelle 29: Force object: Digital auf Seite 113)		

Tabelle 28: Force object – Eigenschaften

Für die *Force object*-Eigenschaften, digital und IOL, werden verschiedene Spezifikationswerte aufgereiht:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
port	integer	1, 2, 5	
channel	string	"a", "b"	
force_dir	string	"out", "in", "clear"	
force_value	integer	0, 1	

Tabelle 29: Force object: Digital

[...]/config

Verwenden Sie das Command-Topic [base-topic]/command/config für *Config object*-Daten. Das *Config object* kann jede der folgenden Eigenschaften besitzen:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
portmode	array (Tabelle 31: Config object: Portmode auf Seite 114)		
ip_address	string	"192.168.1.5"	
subnet_mask	string	"255.255.255.0"	
gateway	string	"192.168.1.100"	

Tabelle 30: Config object – Eigenschaften

Für die *Config object-*Eigenschaft, portmode werden verschiedene Spezifikationswerte aufgereiht:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
port	integer	2	
channelA*	string	"dio", "di", "do", "iol", "off"	
channelB*	string	"dio", "di", "do", "iol", "off", "aux"	
inlogicA	string	"no", "nc"	
inlogicB	string	"no", "nc"	
filterA	integer	3	input filter in ms
filterB	integer	3	input filter in ms
autorestartA	boolean		
autorestartB	boolean		

Tabelle 31: Config object: Portmode

^{*}channelA = Pin 4, channelB = Pin 2

[...]/reset

Verwenden Sie das Command-Topic [base-topic]/command/reset für Reset object-Daten über Neustart- und Factory-Reset-Themen. Das Reset object kann jede der folgenden Eigenschaften besitzen:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
factory_reset	boolean	true / false	
system_reset	boolean	true / false	

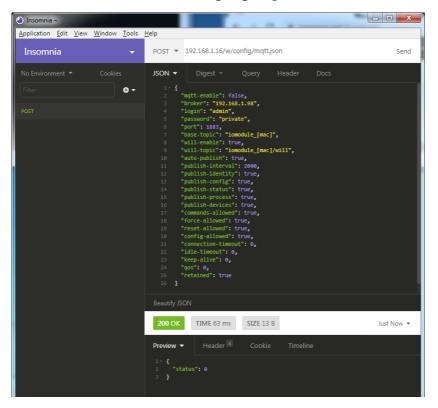
Tabelle 32: Reset object-Eigenschaften

[...]/publish

Verwenden Sie das Command-Topic [base-topic]/command/publish für *Publish object-*Daten.

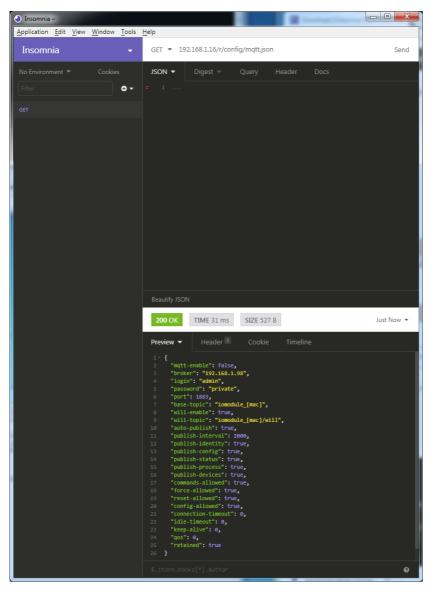
Veröffentlichung aller Topics manuell auslösen (kann verwendet werden, wenn "auto publish" ausgeschaltet ist oder wenn "long interval" eingestellt ist).

14.1.3 MQTT-Konfiguration - Schnellstart-Anleitung



Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

14.1.3.1 MQTT-Konfiguration über JSON


- **1.** Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/
- 2. MQTT konfigurieren:

POST: [IP-address]/w/config/mqtt.json

3. MQTT auslesen:

GET: [IP-address]/r/config/mqtt.json

14.2 OPC UA

OPC Unified Architecture (OPC UA) ist ein Plattform-unabhängiger Standard mit einer Service-orientierten Architektur für die Kommunikation in und mit industriellen Automationssystemen.

Der OPC UA-Standard basiert auf dem Client-Server-Prinzip und lässt Maschinen und Geräte, unabhängig von bevorzugten Feldbussen, genauso horizontal untereinander wie vertikal mit dem ERP-System oder der Cloud kommunizieren. LioN-X stellt einen OPC UA-Server auf Feld-Geräte-Ebene bereit, mit dem sich ein OPC UA-Client für eine datensichere Informationsübertragung verbinden kann.

14.2.1 OPC UA-Konfiguration

Im **Auslieferungszustand** sind die OPC UA-Funktionen **deaktiviert**. Der OPC UA-Server kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP request"-Anfrage gesendet wurde.

Die Konfigurations-URL lautet:

http://[ip-address]/w/config/opcua.json

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

http://[ip-address]/r/config/opcua.json

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Baumübersicht der OPC UA-Objekte:

```
    Gateway

    Identity

    Name

                  • MAC

    Ordering Number

    Production Date

    Capabilites

    Firmware Versions

    Status (r)
    US present
    UL present
                 • US diag

    US Voltage
    UL Voltage

                  • IME

    Forcemode Diag

    Rotary positions

         • Forcing (r)

    Forcing active

    Forcing client

                  · OwnForcing flag

    Config (rw)
    IP Config

    suppressActuatorDiagWithoutUL
    suppressUSDiag

    suppressULDiag
    quickConnect

    Process (r)
    Digital Inputs

    Digital Outputs
    Producing Data (to PLC)

    Consuming Data (from PLC)
    Valid masks

         · Commands (w)
                  • Restart

    Factory Reset

                  · Forcemode enable
        • Port n ("X1"-"X8")

    Identity

    Identity
    Port Name
    Port Type
    Channel m ("Pin 4" / "Pin 2")
    Identity (r)
    Channel Name
    Channel Type
    MaxOutputCurrent
    Status (r)

    Status (r)
    Actuator Diag

    Actuator Voltage
    Actuator Current

                                    · Channel Failsafe flag
                           · Config (rw)

    Surveillance Timeout

                                    • Failsafe Config

    Channel Direction

    Channel Current Limit

    Auto Restart

    InputFilterTime

    InputLogic

Process (r)
Output Bit
Input Bit
Consuming Bit
                                    • Producing Bit

    Forcing (rw)

    Force channel on/off

                                    · Force value on/off

    Simulate channel
    SImulate value

    Status (r)
    Pin 1 Short Circuit Dia

    Pin 1 Voltage
    Pin 1 Current

    Config (rw)
    Pin 1 Current limit
```

Alle Konfigurationselemente sind optional und an keine bestimmte Reihenfolge gebunden. Nicht jedes Element muss gesendet werden. Dies bedeutet, dass nur Konfigurationsänderungen übernommen werden.

Optional: Die Konfigurations-Parameter von OPC UA können direkt über das Web-Interface eingestellt werden. Für das Sharing mit weiteren Geräten, können Sie das Web-Interface herunterladen.

Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem Statusfeld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

Beispiele:

```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

14.2.1.1 Gateway-Objekte

Identity

Name	Datentyp	Beispiel
Device Name	UA_STRING	
Device ID	UA_STRING	
MAC address	UA_STRING	
Ordering Number	UA_STRING	
Serial Number	UA_STRING	
Production Date	UA_STRING	
Hardware Version	UA_STRING	
App Firmware Version	UA_STRING	
Fieldbus Firmware Version	UA_STRING	
IO Firmware Version	UA_STRING	
Running Fieldbus	UA_STRING	
Forcemode supported	UA_BOOLEAN	Forcing supported by module variant

Status (read)

Name	Datentyp	Einheit	Beispiel
US present	UA_BOOLEAN		
UL present	UA_BOOLEAN		
US diagnosis	UA_BOOLEAN		
UL diagnosis	UA_BOOLEAN		
Internal Module Error diag	UA_BOOLEAN		

Name	Datentyp	Einheit	Beispiel
Forcemode diag	UA_BOOLEAN		
US voltage	UA_DOUBLE	V	23.2
UL voltage	UA_DOUBLE	V	22.9
Rotary position	UA_UINT16		343

Forcing (read)

Name	Datentyp	Beispiel
Forcing active	UA_BOOLEAN	
Forcing client	UA_STRING	if forcemode is not active, string is empty
Own Forcing	UA_BOOLEAN	Indicates if OPC UA is currently forcing
Forcing possible	UA_BOOLEAN	true if forcing by OPC UA is possible
Forcemode lock	UA_BOOLEAN	Forcing locked by PLC

Config (read + write)

Name	Datentyp	Beispiel
IP address	UA_STRING	
Subnet Mask	UA_STRING	
Default Gateway IP	UA_STRING	
Suppress US diag	UA_BOOLEAN	
Suppress UL diag	UA_BOOLEAN	
Supppres Actuator Diag w/o UL	UA_BOOLEAN	
QuickConnect	UA_BOOLEAN	

Process (read)

Name	Datentyp	Beispiel
Input Data	UA_UINT16	ioInput for all channels
Output Data	UA_UINT16	ioOutput for all channels
Consuming Data	UA_UINT16	Data from the PLC to the device
Producing Data	UA_UINT16	Data from the device to the PLC

Commands (write)

Name	Argumente	Return	Beispiel
Restart	void	UA_INT32	
Factory reset	void	UA_INT32	
Forcemode enable	void	UA_INT32	
Forcemode disable	void	UA_INT32	

14.2.1.2 Ports-Objekte

Identity

Name	Datentyp	Beispiel
Name	UA_STRING	"X1"
Туре	UA_STRING	"DIO"

Channel *m* ("Pin 4" / "Pin 2")

Details unter Channel objects auf Seite 125.

Status (read)

Name	Datentyp	Einheit	Beispiel
Sensor Diag	UA_BOOLEAN		
Pin 1 Voltage	UA_DOUBLE	V	22.5
Pin 1 Current	UA_INT16	mA	1900

Config (read + write)

Name	Datentyp	Einheit	Beispiel
Pin 1 Current Limit	UA_INT16	mA	1000

14.2.1.3 Channel objects

Identity (read)

Name	Datentyp	Einheit	Beispiel
Name	UA_STRING		"X1A"
Туре	UA_STRING		"DIO"
MaxOutputCurrent	UA_INT16	mA	1300

Status (read)

Name	Datentyp	Einheit	Beispiel
Actuator Diag	UA_BOOL		
Actuator Voltage	UA_DOUBLE	V	23.5
Actuator Current	UA_INT16	mA	800
Channel Failsafe	UA_BOOL		

Config (read + write)

Name	Datentyp	Einheit	Beispiel / Anmerkung
Surveillance Timeout	UA_UINT8	ms	80 ms
Failsafe Config	UA_ENUMERATION		Low Hi Hold Last
Channel Direction	UA_ENUMERATION		DIO Input Output Inactive
Channel Current Limit	UA_UINT16	mA	2000 mA
Auto Restart	UA_BOOL		

Name	Datentyp	Einheit	Beispiel / Anmerkung
InputFilterTime	UA_UINT8	ms	3ms
InputLogic	UA_ENUMERATION		NO
			NC

Process (read)

Name	Datentyp	Beispiel / Anmerkung
Output	UA_BOOLEAN	Output type channels only.
Input	UA_BOOLEAN	Input type channels only.
Consuming	UA_BOOLEAN	
Producing	UA_BOOLEAN	

Forcing (read + write)

Name	Datentyp	Beispiel / Anmerkung
Force channel	UA_BOOLEAN	Enable forcing with the current force value or disable forcing for this channel. Output type channels only.
Force value	UA_BOOLEAN	When changed by the user it will start forcing with the new value if forcing is enabled for opcua. Output type channels only.
Simulate channel	UA_BOOLEAN	Enable simulation with the current force value or disable simulation for this channel. Input type channels only.

Name	Datentyp	Beispiel / Anmerkung
Simulate value	UA_BOOLEAN	When changed by the user it will start simulation with the new value if forcing is enabled for opcua. Input type channels only.

14.2.2 OPC UA Address-Space

OPC UA bietet verschiedene Dienste auf den LioN-X-Geräten an, mit denen ein Client durch die Address-Space-Hierarchie navigieren und Variablen lesen oder schreiben kann. Zusätzlich kann der Client bis zu 10 Attribute des Address-Space bezüglich Wert-Veränderungen beobachten.

Eine Verbindung zu einem OPC UA-Server wird über die Endpoint-URL erreicht:

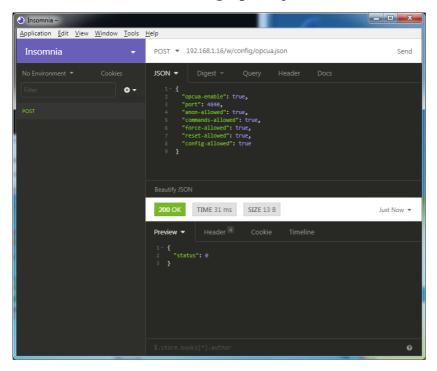
```
opc.tcp://[ip-address]:[port]
```

Verschiedene Geräte-Daten wie die MAC-Adresse, Geräteeinstellungen, Diagnosen oder Status-Informationen können via *Identity objects*, *Config objects*, *Status objects* und *Process objects* ausgelesen werden.

Command objects können gelesen und geschrieben werden. Dadurch ist es möglich, beispielsweise neue Netzwerk-Parameter an das Gerät zu übertragen, um Force-Mode zu verwenden oder um das komplette Gerät auf die Werkseinstellungen zurückzusetzen.

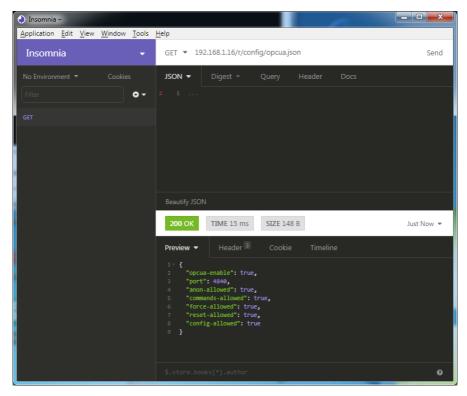
Die folgenden Grafiken zeigen den OPC UA Address-Space der LioN-X-Geräte. Die dargestellten Objekte und Informationen sind abhängig von der verwendeten Gerätevariante.

14.2.3 OPC UA-Konfiguration - Schnellstart-Anleitung



Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

14.2.3.1 OPC UA-Konfiguration über JSON


- **1.** Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/
- 2. OPC UA konfigurieren:

POST: [IP-address]/w/config/opcua.json

3. OPC UA auslesen:

GET: [IP-address]/r/config/opcua.json

14.3 REST API

Die "Representational State Transfer – Application Programming Interface (REST API)" ist eine programmierbare Schnittstelle, die HTTP-Anfragen für GET- und POST-Daten verwendet. Dies ermöglicht den Zugriff auf detaillierte Geräteinformationen.

Für alle LioN-X-Varianten kann die REST API verwendet werden, um den Geräte-Status auszulesen. Für die LioN-X Multiprotokoll-Varianten kann die REST API zusätzlich dafür verwendet werden, Konfigurations- und Forcing-Daten zu schreiben.

Eine angepasste Belden REST API wird in den folgenden Kapiteln beschrieben.

14.3.1 Standard Geräte-Information

Request-Methode: http GET

Request-URL: <ip>/info.json

Parametern.a.Response-FormatJSON

Ziel des "Standard device information"-Request ist es, ein komplettes Abbild des aktuellen Geräte-Status zu erhalten. Das Format ist JSON.

14.3.2 Struktur

Name	Datentyp	Beschreibung	Beispiel
name	string	Device name	"0980 XSL 3912- 121-007D-00F"
order-id	string	Ordering number	"935 700 001"
fw-version	string	Firmware version	"V.1.1.0.0 - 01.01.2021"
hw-version	string	Hardware version	"V.1.00"
mac	string	MAC address of the device	"3C B9 A6 F3 F6 05"
bus	number	0 = No connection 1 = Connection with PLC	1
failsafe	number	0 = Normal operation 1 = Outputs are in failsafe	0
ip	string	IP address of the device	
snMask	string	Subnet Mask	
gw	string	Default gateway	
rotarys	array of numbers (3)	Current position of the rotary switches: Array element 0 = x1 Array element 1 = x10 Array element 2 = x100	
ulPresent	boolean	True, if there is a UL voltage supply detected within valid range	
usVoltage_mv	number	US voltage supply in mV	
ulVoltage_mv	number	UL voltage supply in mV (only available for devices with UL supply)	
inputs	array of numbers (2)	Real state of digital inputs. Element 0 = 1 Byte: Port X1 Channel A to Port X4 Channel B Element 0 = 1 Byte: Port X5 Channel A to Port X8 Channel B	[128,3]
output	array of numbers (2)	Real State of digital outputs. Element 0 =1 Byte: Port X1 Channel A to port X4 Channel B Element 0 = 1 Byte: Port X5 Channel A to port X8 Channel B	[55,8]

Name	Datentyp	Beschreib	ung	Beispiel
consuming	array of numbers (2)	Cyclic data	from PLC to device	
producing	array of numbers (2)	Cyclic data	from device to PLC	
diag	array of numbers (4)	Diagnostic information		
fieldbus	FIELDBUS Object			
FIELDBUS Object				
fieldbus_name	string	Currently us	sed fieldbus	
state	number	Fieldbus sta	ate	
state_text	number	Textual representation of fieldbus state: 0 = Unknown 1 = Bus disconnected 2 = Preop 3 = Connected 4 = Error 5 = Stateless		
forcing	FORCING Object	Information the device	about the forcing state of	
channels	Array of CHANNEL (16)	Basic inform	nation about all input/output	

Name	Datentyp	Beschreibung	Beispiel
CHANNEL Object			
name	string	Name of channel	
type	number	Hardware channel type as number: 0 = DIO 1 = Input 2 = Output 3 = Input/Output 4 = Channel not available 5 = Channel not available 6 = Channel not available 7 = Channel not available 8 = Channel not available	
type_text	string	Textual representation of the channel type	
config	number	Current configuration of the channel: 0 = DIO 1 = Input 2 = Output 3 = Channel not available 4 = Deactivated 5 = Channel not available	
config_text	string	Textual representation of the current config	
inputState	boolean	Input data (producing data) bit to the PLC	
outputState	boolean	Output data bit to the physical output pin	
forced	boolean	True, if the output pin of this channel is forced	
simulated	boolean	True, if the input value to the PLC of this channel is simulated	
actuatorDiag	boolean	True, if the output is in short circuit / overload condition	
sensorDiag	boolean	True, if the sensor supply (Pin 1) is in short circuit / overload condition	

Name	Datentyp	Beschreibung	Beispiel
maxOutputCurrent _mA	number	Maximum output current of the output in mA	
current_mA	number	Measured current of the output in mA (if current measurement is available)	
voltage_mV	number	Measured voltage of this output in mV (if voltage measurement is available)	
PORT Object			
port_type	string	Textual representation of the port type	
aux_mode	number	Indicates the configured mode for the Pin 2: 0 = No AUX 1 = AUX output (always on) 2 = Digital output (can be controlled by cyclic data) 3 = Digital input	
aux_text	string	Textual representation of the current aux mode	"AUX Output"
ds_fault	number	Data storage error number	
ds_fault_text	string	Textual data storage error.	
diag	array of DIAG (n)	Array of port related events	
DIAG Object			
error	number	Error code	
source	string	Source of the current error.	"device" "master"
message	string	Error message	"Supply Voltage fault"
FORCING Object		Forcing information of the device	
forcingActive	boolean	Force mode is currently active	
forcingPossible	boolean	True, if forcing is possible and force mode can be activated	
AuthPossible	boolean	True, if the JSON Interface can obtain forcing autorization	
ownForcing	boolean	True, if forcing is performed by REST API at the moment	
currentClient	string	Current forcing client identifier	

Name	Datentyp	Beschreibung	Beispiel
digitalOutForced	array of numbers (2)	The force values of all 16 digital output channels.	
digitalOutMask	array of numbers (2)	The forcing mask of all 16 digital output channels.	
digitalInForced	array of numbers (2)	The force values of all 16 digital input channels.	
digitalInMask	array of numbers (2)	The forcing mask of all 16 digital input channels.	

14.3.3 Konfiguration und Forcing

Methode: POST

URL: <ip>/w/force.json

Parameter: None

Post-Body: JSON-Objekt

Eigenschaft	Datentyp	Beispielwerte	Beschreibung
forcemode	boolean	true / false	Forcing authority on/off
portmode	array (Port mode object)		
digital	array (Digital object)		

Tabelle 33: Root object

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
port	integer	07	
channel	integer	"a","b"	optional default is "a"
direction	string	"dio","di","do", "off", "aux"	
inlogica	string	"no","nc"	
inlogicb	string	"no","nc"	

Tabelle 34: Port mode object

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
port	integer	07	
channel	string	"a","b"	
force_dir	string	"phys_out","plc_in","clear"	optional default is "phys_out"
force_value	integer	0,1	

Tabelle 35: Digital object

14.4 CoAP-Server

Das Constrained Application Protocol (CoAP) ist ein spezialisiertes Internet-Anwendungsprotokoll für eingeschränkte Netzwerke wie verlustbehaftete oder stromsparende Netzwerke. CoAP ist vor allem in der M2M-Kommunikation (Machine to Machine) hilfreich und kann dafür verwendet werden, vereinfachte HTTP-Anfragen von Low-Speed-Netzwerken zu übersetzen.

CoAP basiert auf dem Server-Client-Prinzip und ist ein Service-Layer-Protokoll, mit dem Knoten und Maschinen miteinander kommunizieren können. Die LioN-X Multiprotokoll-Varianten stellen mittels einer REST-API-Schnittstelle über UDP die CoAP-Server-Funktionalitäten zur Verfügung.

14.4.1 CoAP-Konfiguration

Im Auslieferungszustand sind die CoAP-Funktionen *deaktiviert*. Der CoAP-Server kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel CoAP-Konfiguration - Schnellstart-Anleitung auf Seite 140.

Die Konfigurations-URL lautet:

http://[ip-address]/w/config/coapd.json

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

http://[ip-address]/r/config/coapd.json

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
enable	boolean	Master-Switch für den CoAP-Server	true / false
port	integer (0 bis 65535)	Port des CoAP-Servers	5683

Tabelle 36: CoAP-Konfiguration

CoAP-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

Beispiele:

```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

14.4.2 REST API-Zugriff via CoAP

Die Verbindung zum CoAP-Server auf den LioN-X Multiprotokoll-Varianten kann über folgende URL hergestellt werden:

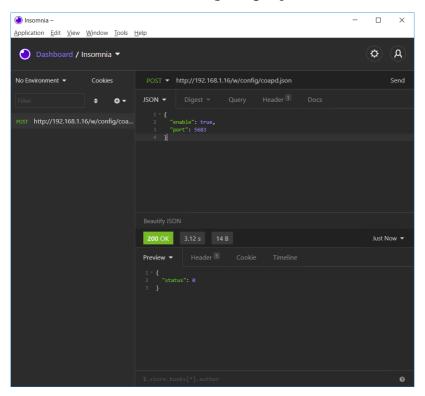
```
coap://[ip-address]:[port]/[api]
```

Für LioN-X können Sie via CoAP-Endpoint auf die folgenden REST API-Anfragen (JSON-Format) zugreifen:

Тур	API	Hinweis
GET	/r/status.lr	
GET	/r/system.lr	
GET	/info.json"	
GET	/r/config/net.json	
GET	/r/config/mqtt.json	
GET	/r/config/opcua.json	
GET	/r/config/coapd.json	
GET	/r/config/syslog.json	
GET	/contact.json	
GET	/fwup_status	

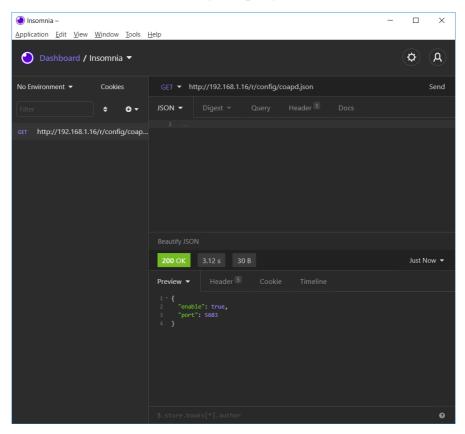
Tabelle 37: REST API-Zugriff via CoAP

14.4.3 CoAP-Konfiguration - Schnellstart-Anleitung



Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

14.4.3.1 CoAP-Konfiguration über JSON


- **1.** Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/
- 2. CoAP konfigurieren:

POST: [IP-address]/w/config/coapd.json

3. CoAP-Konfiguration auslesen:

GET: [IP-address]/r/config/coapd.json

14.5 Syslog

Die LioN-X Multiprotokoll-Varianten stellen einen Syslog-Client zur Verfügung, der sich mit einem konfigurierten Syslog-Server verbinden kann und in der Lage ist, Meldungen zu protokollieren.

Syslog ist ein plattformunabhängiger Standard für die Protokollierung von Meldungen. Jede Meldung enthält einen Zeitstempel sowie Informationen über den Schweregrad und das Subsystem. Das Syslog-Protokoll RFC5424 basiert auf dem Server-Client-Prinzip und lässt Maschinen und Geräte Nachrichten im Netzwerk senden und zentral sammeln. (Für weitere Details zum verwendeten Syslog-Standard, gehen Sie auf https://datatracker.ietf.org/doc/html/rfc5424.)

LioN-X unterstützt die Speicherung von 256 Meldungen in einem Ringspeicher, die an den konfigurierten Syslog-Server gesendet werden. Wenn der Ring mit 256 Meldungen voll ist, wird jeweils die älteste Meldung durch die neu eintreffenden Meldungen ersetzt. Auf dem Syslog-Server können alle Meldungen gespeichert werden. Der Syslog-Client speichert keine der Meldungen dauerhaft.

14.5.1 Syslog-Konfiguration

Im **Auslieferungszustand** sind die Syslog-Funktionen **deaktiviert**. Der Syslog-Client kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel Syslog-Konfiguration - Schnellstart-Anleitung auf Seite 145.

Die Konfigurations-URL lautet:

```
http://[ip-address]/w/config/syslog.json
```

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

```
http://[ip-address]/r/config/syslog.json
```

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
syslog-enable	boolean	Master-Switch für den Syslog Client	true / false
global-severity	integer	Meldegrad des Syslog Client 0 – Emergency 1 – Alert 2 – Critical 3 – Error 4 – Warning 5 – Notice 6 – Info 7 – Debug Der Client speichert alle Meldungen des eingestellten Schweregrads, inklusive aller Meldungen mit niedrigerem Level.	0/1/2/ 3 /4/5/6/7
server-address	string (IP- Adresse)	IP-Adresse des Syslog-Servers	192.168.0.51 (Default: null)
server-port	integer (0 bis 65535)	Server-Port des Syslog-Servers	514
server-severity	integer (0 bis 7)	Meldegrad des Syslog-Servers 0 – Emergency 1 – Alert 2 – Critical 3 – Error 4 – Warning 5 – Notice 6 – Info 7 – Debug	0/1/2/ 3 /4/5/6/7

Tabelle 38: Syslog-Konfiguration

Syslog-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt.

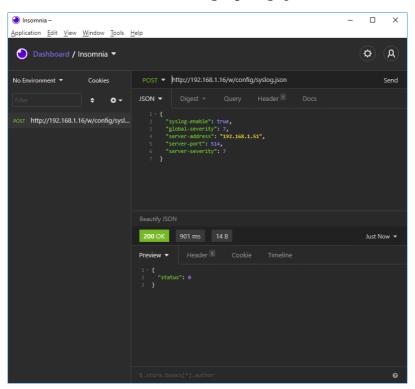
Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

Beispiele:

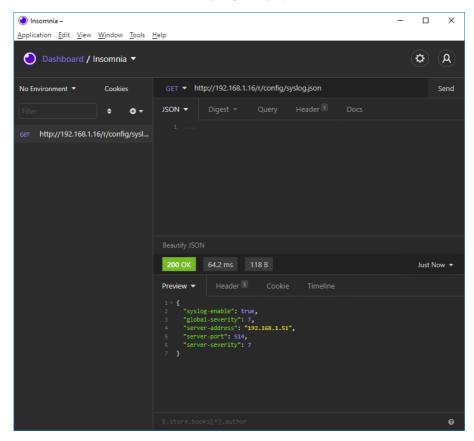
```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean expected"}]}
{"status": 0}
{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON object"}]}
```

14.5.2 Syslog-Konfiguration - Schnellstart-Anleitung



Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

14.5.2.1 Syslog-Konfiguration über JSON


- **1.** Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/
- 2. Syslog konfigurieren:

POST: [IP-address]/w/config/syslog.json

3. Syslog-Konfiguration auslesen:

GET: [IP-address]/r/config/syslog.json

14.6 Network Time Protocol (NTP)

Die LioN-X Multiprotokoll-Varianten stellen einen NTP-Client (Version 3) zur Verfügung, der sich mit einem konfigurierten NTP-Server verbinden kann und in der Lage ist, die Netzwerkzeit in einem konfigurierbaren Interval zu synchronisieren.

NTP ist ein Netzwerkprotokoll, das UDP-Datagramme zum Senden und Empfangen von Zeitstempeln verwendet, um sie mit einer lokalen Uhr zu synchronisieren. Das NTP-Protokoll RFC1305 basiert auf dem Server-Client-Prinzip und unterstützt ausschließlich die Synchronisation mit der Universalzeit "Coordinated Universal Time" (UTC). (Für weitere Details zum verwendeten NTP-Standard, gehen Sie auf https://datatracker.ietf.org/doc/html/rfc1305.)

14.6.1 NTP-Konfiguration

Im **Auslieferungszustand** ist der NTP-Client **deaktiviert**. Der NTP-Client kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel NTP-Konfiguration - Schnellstart-Anleitung auf Seite 149.

Die Konfigurations-URL lautet:

http://[ip-address]/w/config/ntpc.json

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

http://[ip-address]/r/config/ntpc.json

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
NTP-Client- Status	boolean	Master-Switch für den NTP-Client	true / false
Server-Adresse	string	IP-Adresse des NTP-Servers	192.168.1.50
Server-Port	integer	Port des NTP-Servers	123
Update-Intervall	integer	Intervall, in dem sich der Client mit dem konfigurierten NTP-Server verbindet (siehe Tabellenzeile "Server-Adresse"). Hinweis: Der Wert wird in Sekunden angegeben.	1/2/10/ 60

Tabelle 39: NTP-Konfiguration

NTP-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt.

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

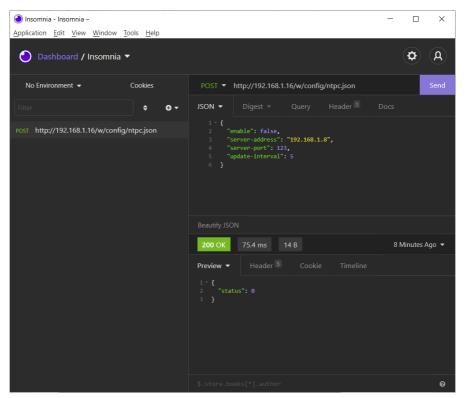
Beispiele:

```
{"status": -1, "error": [{"Element": "ntpc-enable", "Message": "Boolean
expected"}]}

{"status": 0}

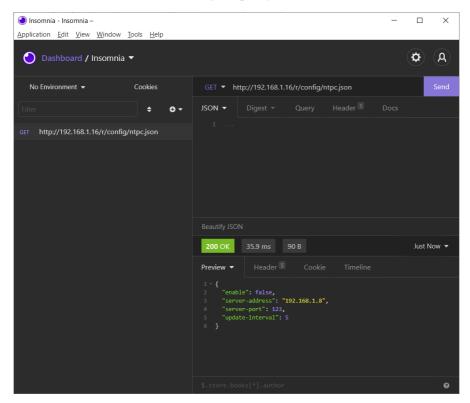
{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

14.6.2 NTP-Konfiguration - Schnellstart-Anleitung


Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

14.6.2.1 NTP-Konfiguration über JSON

1. Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/


2. NTP konfigurieren:

POST: [IP-address]/w/config/ntpc.json

3. NTP-Konfiguration auslesen:

GET: [IP-address]/r/config/ntpc.json

15 Integrierter Webserver

Alle Gerätevarianten verfügen über einen integrierten Webserver, welcher Funktionen für die Konfiguration der Geräte und das Anzeigen von Statusund Diagnoseinformationen über ein Web-Interface zur Verfügung stellt.

Das Web-Interface bietet einen Überblick über die Konfiguration und den Status des Gerätes. Es ist über das Web-Interface ebenfalls möglich, einen Neustart, ein Zurücksetzen auf die Werkseinstellungen oder ein Firmware-Update durchzuführen.

Geben Sie in der Adresszeile Ihres Webbrowsers "http://" gefolgt von der IP-Adresse ein, z. B. "http://192.168.1.5". Falls sich die Startseite der Geräte nicht öffnet, überprüfen Sie Ihre Browser- und Firewall-Einstellungen.

15.1 LioN-X 0980 XSL... -Varianten

15.1.1 Status-Seite

Die Status-Seite bietet einen schnellen Überblick über den aktuellen Zustand des Gerätes.

Die linke Seite zeigt eine grafische Darstellung des Moduls mit allen LEDs und den Positionen der Drehkodierschalter.

Auf der rechten Seite zeigt die Tabelle "Device Information" (Geräteinformationen) einige grundlegende Daten zum Modul, wie z. B. die Variante, den Zustand der zyklischen Kommunikation und einen Diagnoseindikator. Dieser zeigt an, ob eine Diagnose im Modul vorliegt.

Die Tabelle "Port Information" (Port-Informationen) zeigt die Konfiguration und den Zustand der I/O-Ports.

15.1.2 Port-Seite

Neben ausführlichen Port-Informationen werden im Feld **Port Diagnosis** eingehende sowie ausgehende Diagnosen als Klartext angezeigt. **Pin 2** und **Pin 4** enthalten Informationen zur Konfiguration und zum Zustand des Ports.

15.1.3 Systemseite

Die Systemseite zeigt die grundlegende Informationen zum Modul an wie die Firmware-Version, Geräte-Informationen, Ethernet-, Netzwerk- und Feldbus-Informationen.

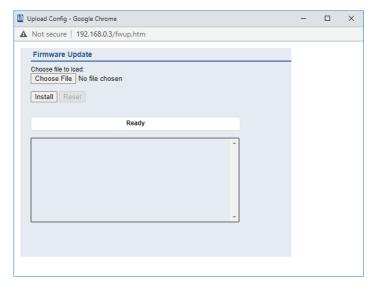
Restart Device (Gerät neu starten)

Das Modul initialisiert die Rücksetzung der Software.

Reset to Factory Settings (Auf Werkseinstellungen zurücksetzen)

Das Modul stellt die Werkseinstellungen wieder her.

IP Settings


Verwenden Sie diesen Parameter, um die aktuelle IP-Adresse des Moduls anzupassen.

Diese Funktion ist für PROFINET nur bei der Inbetriebnahme von Nutzen. Normalerweise findet die SPS die IP-Adresse beim Start-Up über den PROFINET-Gerätenamen heraus und stellt diese automatisch ein.

Firmware Update

Das Modul initialisiert ein Firmware-Update.

Wählen Sie für ein Firmware-Update den *.ZIP-Container, der auf unserer Website verfügbar ist, oder wenden Sie sich an unser Support-Team. Befolgen Sie anschließend die Anweisungen, die auf dem Bildschirm angezeigt werden.

15.1.4 Benutzerseite

Über die Benutzerseite kann die Benutzerverwaltung für das Web-Interface vorgenommen werden. Über diese Seite können neue Benutzer mit den Zugriffsberechtigungen "Admin" oder "Write" (Schreiben) hinzugefügt werden. Ändern Sie das Admin-Standardpasswort nach der Konfiguration des Gerätes aus Sicherheitsgründen.

Standard Benutzer Login-Daten:

User: admin

Password: private

16 Technische Daten

Die folgenden Abschnitte geben einen Überblick über die wichtigsten funktionalen Daten für die Bedienung des Gerätes. Mehr Informationen und detaillierte technische Angaben finden Sie im entsprechenden **Data Sheet** des gewünschten Produktes auf catalog.belden.com innerhalb der Produktspezifischen Download-Bereiche .

16.1 Allgemeines

Schutzart (Gilt nur, wenn die Steckverbinder verschraubt sind oder Schutzkappen verwendet werden.) ¹	IP65 IP67 IP69K		
Umgebungstemperatur (während Betrieb und Lagerung)	0980 XSL 3x00-121 0980 XSL 3x01-121 0980 XSL 3x03-121	-40 °C +70 °C	
Gewicht	LioN-X 60 mm	ca. 500 gr.	
Umgebungsfeuchtigkeit	Max. 98 % RH (Für UL-Anwendungen: Max. 80 % RH)		
Gehäusematerial	Zinkdruckguss		
Oberfläche	Nickel matt		
Brennbarkeitsklasse	UL 94 (IEC 61010)		
Vibrationsfestigkeit (Schwingen) DIN EN 60068-2-6 (2008-11)	15 g/5–500 Hz		
Stoßfestigkeit DIN EN 60068-2-27 (2010-02)	50 g/11 ms +/- X, Y, Z		
Anzugsdrehmomente	Befestigungsschrauben M4: 1 Nm Erdungsanschluss M4: 1 Nm M12-Steckverbinder: 0,5 Nm		
Zugelassene Kabel	Ethernet-Kabel nach IEEE 802.3, min. CAT 5 (geschirmt) Max. Länge von 100 m, ausschließlich innerhalb eines Gebäudes		

Tabelle 40: Allgemeine Informationen

¹ Unterliegt nicht der UL-Untersuchung.

16.2 EtherNet/IP Protokoll

Protokoll	EtherNet/IP, CIP V3.27		
Update-Zyklus	1 ms		
EDS-Datei	EDS-V3.27.1-BeldenDeutschland-XXX-yyyymmdd.eds		
Übertragungsrate	10/100 Mbit/s, Halb-/Vollduplex		
Übertragungsverfahren Autonegotiation	10BASE-T/100BASE-TX wird unterstützt		
RPI min.	1 ms		
Herstellerkennung (Vendor ID)	21		
Product-Typ	12 (Communications Adapter)		
Product-Code	41000 (0980 XSL 3900-121-007D-01F, 935705-001) 41001 (0980 XSL 3901-121-007D-01F, 935706-002) 41002 (0980 XSL 3903-121-007D-01F, 935707-001) 41xxx (0980 XSL 3923-121-007D-01F, 935708-001)		
Unterstützte Ethernet-Protokolle	Ping ARP HTTP TCP/IP DHCP/BOOTP		
Switch-Funktionalität	integriert		
EtherNet/IP-Schnittstelle Anschlüsse Autocrossing	2 M12-Buchsen, 4-polig, D-kodiert (siehe Anschlussbelegungen) 2 M12 Hybrid male/female, 8-polig wird unterstützt		
Galvanisch getrennte Ethernet-Ports -> FE	2000 V DC		

Tabelle 41: EtherNet/IP Protokoll

16.3 Spannungsversorgung der Modulelektronik/Sensorik

Port X03, X04	M12-L-coded Power, Stecker/Buchse, 5-polig			
	Pin 1 / Pin 3			
Nennspannung U _S	24 V DC (SELV/PELV)			
Stromstärke U _S	Max. 16 A			
Spannungsbereich	21 30 V DC			
Stromverbrauch der Modulelektronik	In der Regel 160 mA (+/-20 % bei U _S Nennspannung)			
Spannungsunterbrechung	Max. 10 ms			
Restwelligkeit U _S	Max. 5 %			
Stromaufnahme	0980 XSL 3x00-121	Port X1 X8	max. 4 A pro Port	
Sensorsystem (Pin 1)	0980 XSL 3x01-121	(Pin 1)	(bei T _{ambient} = 30° C)	
(1 111 1)	0980 XSL 3x03-121	Port X1 X4	max. 4 A pro Port	
		(Pin 1)	(bei T _{ambient} = 30° C)	
Spannungspegel der Sensorversorgung	Min. (U _S – 1,5 V)			
Kurzschluss-/ Überlastschutz der Sensorvers.	Ja, pro Port			
Verpolschutz	Ja			
Betriebsanzeige (U _S)	LED grün: 18 V (+/- 1 V) < U _S			
	LED rot:	U _S < 18 V (+/- 1 V)	

Tabelle 42: Informationen zur Spannungsversorgung der Modulelektronik/ Sensorik

Achtung: Überschreiten Sie nicht die folgenden Maximalströme für die Sensorversorgung:

- Max. 4,0 A pro Port
- ▶ Max. 5,0 A für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8

▶ Max. 9,0 A gesamt für die ganze Port-Gruppe X1 .. X8 Derating beachten!

16.4 Spannungsversorgung der Aktorik

Port X03, X04	M12-L-coded Power, Stecker/Buchse, 5-polig Pin 2 / Pin 4	
Nennspannung U _L	24 V DC (SELV/PELV)	
Spannungsbereich	18 30 V DC	
Stromstärke U _L	Max. 16 A	
Restwelligkeit U _L	Max. 5 %	
Verpolschutz	Ja	
Betriebsanzeige (U _L)	LED grün: 18 V (+/- 1 V) < U_L LED rot: U_L < 18 V (+/- 1 V) oder U_L > 30 V (+/- 1 V) * wenn "Report U_L supply voltage fault" aktiviert ist.	

Tabelle 43: Informationen zur Spannungsversorgung der Aktorik

16.5 I/O-Ports

0980 XSL 3900-121	Ports X1 X8	DI, DO	M12-Buchse, 5-polig
0980 XSL 3901-121	Ports X1 X8	DI	
0980 XSL 39x3-121	Ports X1 X4	DI	
	Ports X5 X8	DO	

Tabelle 44: I/O ports: Funktionsübersicht

16.5.1 Digitale Eingänge

Eingangs- beschaltung	0980 XSL 3900-121		Typ 3 gemäß
	0980 XSL 3901-121		IEC 61131-2
	0980 XSL 39x3-121		
Nenneingangs- spannung	24 V DC		
Eingangsstrom	typischerweise 3 mA		
Kanaltyp	Schließer, p-schaltend		
Anzahl der	0980 XSL 3900-121	X1 X8	16
digitalen Eingänge	0980 XSL 3901-121	7	
	0980 XSL 39x3-121	X1 X4	8
Statusanzeige	Gelbe LED für Kanal A (Pin 4) Weiße LED für Kanal B (Pin 2)	•	
Diagnoseanzeige	Rote LED pro Port		

Tabelle 45: I/O-Ports konfiguriert als digitaler Eingang

16.5.2 Digitale Ausgänge

Achtung: Überschreiten Sie nicht die folgenden Maximalströme für die Sensorversorgung:

- Max. 2,0 A pro Port
- Max. 5,0 A für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8
- ► Max. 9,0 A gesamt für die ganze Port-Gruppe X1 .. X8 (X5 .. X8 bei 8DI8DO-Geräten)

Derating beachten!

Ausgangstyp	Schließer, p-schaltend		
Ausgangsspannung pro Kanal			
Signalstatus "1" Signalstatus "0"	min. (U _L -1 V) max. 2 V		
Max. Ausgangsstrom pro Gerät	0980 XSL 3900-121	9 A	
	0980 XSL 39x3-121	9 A	
Max. Ausgangsstrom pro Kanal	0980 XSL 3900-121 (X1 X8)	2 A	
	0980 XSL 39x3-121 (X5 X8)	2 A	
Kurzschlussfest/überlastfest	ja / ja		
Verhalten bei Kurzschluss oder Überlast	Abschaltung mit automatischem Einschalten (parametriert)		
Anzahl der digitalen Ausgänge	0980 XSL 3900-121 (X1 X8)	16	
	0980 XSL 39x3-121 (X5 X8)	8	
Statusanzeige	Gelbe LED pro Ausgang Kanal A (Pin 4) Weiße LED pro Ausgang Kanal B (Pin 2)		
Diagnoseanzeige	Rote LED pro Port		

Tabelle 46: I/O-Ports konfiguriert als digitaler Ausgang

Warnung: Bei gleichzeitiger Verwendung von Geräten mit galvanischer Trennung und Geräten ohne galvanische Trennung innerhalb desselben Systems wird die galvanische Trennung aller angeschlossenen Geräte aufgehoben.

16.6 LEDs

LED	Farbe	Beschreibung	
U _L	Grün	Hilfssensor-/Aktuatorspannung OK	
		18 V (+/- 1 V) < U _L /U _{AUX} < 30 V (+/- 1 V)	
	Rot [*]	Hilfssensor-/Aktuatorspannung NIEDRIG	
		$U_L < 18 \text{ V (+/- 1 V) oder } U_L > 30 \text{ V (+/- 1 V)}$	
		* wenn "Report U $_{L}$ supply voltage fault" aktiviert ist.	
	AUS	Keiner der zuvor beschriebenen Zustände.	
Us	Grün	System-/Sensorspannung OK	
		18 V (+/- 1 V) < U _S < 30 V (+/- 1 V)	
	Rot	System-/Sensorspannung NIEDRIG	
		U _S < 18 V (+/- 1 V) oder U _S > 30 V (+/- 1 V)	
	Rotes Blinken	Gerät wird auf Werkseinstellungen zurückgesetzt (Position der Drehkodierschalter: 9-7-9)	
	AUS	Keiner der zuvor beschriebenen Zustände.	
X1 X8 A	Gelb	Status digitaler Eingang und digitaler Ausgang an Pin-4-Leitung "Ein".	
	Rot	Überlast oder Kurzschluss an Pin 4-Leitung.	
		/ Überlast oder Kurzschluss an Leitung L+ (Pin 1) / Kommunikationsfehler	
	AUS	Keiner der zuvor beschriebenen Zustände.	
X1 X8 B	Weiß	Status digitaler Eingang und digitaler Ausgang an Pin-2-Leitung	
X1 X0 B	vveiis	"Ein".	
	Rot	Überlast oder Kurzschluss an Pin 2-Leitung.	
		/ Überlast oder Kurzschluss an Leitung L+ (Pin 1)	
		/ Kommunikationsfehler	
	AUS	Keiner der zuvor beschriebenen Zustände.	
P1 Lnk / Act P2 Lnk / Act	Links already		
	Gelbes Blinken	Datenaustausch mit einem anderen Teilnehmer.	
	AUS	Keine Verbindung zu weiterem Teilnehmer. Kein Link, kein Datenaustausch.	

LED	Farbe	Beschreibung	
BF	Rot	Bus Fault. Keine Konfiguration, keine oder langsame physikal. Verbindung.	
	Rotes Blinken mit 2 Hz	Link vorhanden, aber keine Kommunikationsverbindung zur EtherNet/IP-Steuerung.	
	AUS	EtherNet/IP-Steuerung hat eine aktive Verbindung zum Gerät aufgebaut.	
DIA	Rot	EtherNet/IP Modul-Diagnostik-Alarm aktiv.	
	Rotes Blinken mit 1 Hz	Watchdog Time-out; FailSafe Mode ist aktiv.	
	Rotes Doppelblinken	Firmware-Update	
	AUS	Keiner der zuvor beschriebenen Zustände	

Tabelle 47: Informationen zu den LED-Farben

16.7 Datenübertragungszeiten

Die folgenden Tabellen bieten eine Übersicht der internen Datenübertragungszeiten eines LioN-X.

Es gibt drei gemessene Datenrichtungswerte für jeden Anwendungsfall:

- ▶ **SPS zu DO:** Übertragung von geänderten SPS-Ausgangsdaten zum digitalen Ausgangskanal.
- ▶ **DI zu SPS:** Übertragung eines geänderten digitalen Eingangssignals am digitalen Eingangskanal zur SPS.
- ▶ Round-trip time (RTT): Übertragung von geänderten SPS-Ausgangsdaten zum Digitalausgang. Der digitale Ausgang ist mit einem digitalen Eingang verbunden. Übertragung eines geänderten digitalen Eingangssignals am Kanal zur SPS. RTT = [SPS zu DO] + [DI zu SPS].

Die gemessenen Werte sind der Ethernet-Datenübertragungsstrecke entnommen. Daher sind die Werte ohne SPS-Prozesszeiten und SPS-Zykluszeiten angegeben.

Um nutzerabhängige Datenübertragung und Round-Trip-Zeiten möglicher Eingangsfilter berechnen zu können, müssen SPS-Prozesszeiten und Zykluszeiten miteinbezogen werden.

Anwendungsfall 1:

LioN-X Digital-I/O-Konfiguration mit aktiviertem Web-Interface bei deaktivierten IIoT-Protokollen

16DIO-Variante (0980 XSL 3900-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms			
	Minimum Durchschnitt Maximum			
SPS zu DO	2.2	3.6	5.0	
DI zu SPS	3.1	3.0	4.7	
RTT	6.0	7.6	9.0	

8DI/8DO-Variante ohne galvanische Trennung (0980 XSL 3913-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms		
	Minimum Durchschnitt Maximum		
SPS zu DO	1.9	3.2	4.7
DI zu SPS	2.1	2.6	3.1
RTT	4.0	5.8	7.0

8DI/8DO-Variante mit galvanischer Trennung (0980 XSL 3903-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms		
	Minimum	Durchschnitt	Maximum
SPS zu DO	2.2	3.6	5.3
DI zu SPS	3.3	4.0	4.6
RTT	6.0	7.6	9.0

Anwendungsfall 2:

LioN-X Digital-I/O-Konfiguration mit aktiviertem Web-Interface bei *aktivierten* IIoT-Protokollen

16DIO-Variante (0980 XSL 3900-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms		
	Minimum	Durchschnitt	Maximum
SPS zu DO	3.4	5.1	7.6
DI zu SPS	5.8	6.4	7.6
RTT	10.0	11.5	14.0

8DI/8DO-Variant ohne galvanische Trennung (0980 XSL 3913-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms		
	Minimum	Durchschnitt	Maximum
SPS zu DO	3.2	4.8	7.1
DI zu SPS	3.3	3.8	4.3
RTT	7.0	8.6	11.0

8DI/8DO-Variante mit galvanischer Trennung (0980 XSL 3903-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms		
	Minimum	Durchschnitt	Maximum
SPS zu DO	3.5	5.2	7.6
DI zu SPS	5.7	6.4	7.1
RTT	10.0	11.6	14.0

17 Zubehör

Unser Angebot an Zubehör finden Sie auf unserer Website:

http://www.beldensolutions.com