

Manual

EtherNet/IP

LioN-X IO-Link Master: 0980 XSL 3912-121-007D-00F (8 x IO-Link Class A, Multiprotocol)

LioN-Xlight IO-Link Master: 0980 LSL 3111-121-0006-002 (8 x IO-Link Class A, EtherNet/IP)

0980 LSL 3110-121-0006-002 (4 x IO-Link Class A + 8 x DI, EtherNet/IP)

Contents

1 About this manual	9
1.1 General information	9
1.2 Explanation of symbols	10
1.2.1 Use of danger information	10
1.2.2 Use of general information	10
1.3 Version information	11
2 Safety instructions	12
2.1 Intended use	12
2.2 Qualified personnel	13
3 Designations and synonyms	14
4 System description	17
4.1 About LioN-X and LioN-Xlight	17
4.2 Device variants	18
4.3 I/O port overview	20
5 Overview of product features	22
5.1 EtherNet/IP product features	22
5.2 I/O port features	24
5.3 Integrated Web server	25
5.4 Security features	26
5.5 Other features	27

6 Assembly and wiring	g	28
6.1 General information		28
6.2 Outer dimensions		29
6.2.1 LioN-X multiprotocol va	riants	29
6.2.2 LioN-Xlight variants with	n EtherNet/IP	30
6.2.3 Notifications		32
6.3 Port assignments		33
6.3.1 Ethernet ports, M12 soc	•	33
6.3.2 Power supply with M12	•	34
6.3.3 I/O ports as M12 socke	ts	35
6.3.3.1 IO-Link Class A		35
7 Starting operation		37
7.1 EDS file		37
7.2 MAC addresses		37
7.3 State on delivery		38
7.4 Setting network parameters		39
7.4.1 IP address for LioN-X v	ariants	39
7.4.2 IP address for LioN-Xlig	Jht variants	39
7.5 Setting the rotary encoding sv		40
	d IP configuration via rotary encoding	
switches		42
7.5.2 Factory reset		43
8 Configuration Ether	Net/IP	44
8.1 Assembly types		44
8.2 Connections		45
8.2.1 IO-Link parameters (Exc	clusive Owner)	46
8.2.2 IO-Link parameters (Lis	•	46

9 Configuration parameters	48
9.1 General settings	49
9.1.1 Force Mode Lock	50
9.1.2 Web Interface Lock	50
9.1.3 Digital Output Control	50
9.1.4 Report U _L /U _{Aux} Supply Voltage Fault	50
9.1.5 Report DO Fault without U _L /U _{Aux}	50
9.1.6 CIP object configuration lock	50
9.1.7 External configuration lock	50
9.1.8 IO Mapping Mode	51
9.2 Channel settings	53
9.2.1 IO Mapping (Ch116)	55
9.2.2 DO Surveillance Timeout (Ch116)	55
9.2.3 DO Failsafe (Ch116)	55
9.2.4 DO Restart Mode (Ch116)	56
9.2.5 DO Switch Mode (Ch116)	56
9.2.6 DI Logic (Ch116)	57
9.2.7 DI Filter (Ch116)	57
9.2.8 Channel Mode (Ch116)	57
9.3 IO-Link diagnosis settings	59
9.3.1 IO-Link Master Diagnosis	59
9.3.2 IO-Link Device Error	59
9.3.3 IO-Link Device Warning	59
9.3.4 IO-Link Device Notification	60
9.3.5 IO-Link Device Diagnosis Port 18	60
9.4 IO-Link Port 18 settings	61
9.4.1 Output Data Size	63
9.4.2 Input Data Size	64
9.4.3 Input Data Extension	64
9.4.4 Output Data Swapping Mode	64
9.4.5 Output Data Swapping Offset	65
9.4.6 Input Data Swapping Mode	65
9.4.7 Input Data Swapping Offset	65

9.4.8 IOL Failsafe 9.4.9 Port Mode	65 66
9.4.10 Validation and Backup	67
9.4.11 Vendor ID	68
9.4.12 Device ID	68
9.4.13 Cycle Time	68
10 Process data assignment	70
10.1 Consuming data image (output)	70
10.1.1 Digital output channel control	70
10.1.2 IO-Link output data	71
10.2 Producing data image (input)	71
10.2.1 Digital input channel status	72
10.2.2 General diagnostics	72
10.2.3 Sensor diagnostics	73
10.2.4 Actuator/U _L /U _{Aux} diagnostics	73
10.2.5 IO-Link diagnostics 10.2.6 IO-Link input data	74 75
10.2.0 10-Link input data	70
11 Configuration and operation with Rockwell	70
Automation Studio 5000®	79
12 CIP object classes	84
12.1 EtherNet/IP object classes	
12.1.1 Identity Object (0x01)	84
	84 85
12.1.2 Assembly Object (0x04)	
12.1.3 Discrete Input Point Object (0x08)	85 88 89
12.1.3 Discrete Input Point Object (0x08) 12.1.4 Discrete Output Point Object (0x09)	85 88 89 90
12.1.3 Discrete Input Point Object (0x08) 12.1.4 Discrete Output Point Object (0x09) 12.1.5 DLR Object (0x47)	85 88 89 90
12.1.3 Discrete Input Point Object (0x08) 12.1.4 Discrete Output Point Object (0x09)	85 88 89 90

12.1.8 Ethernet Link Object (0xF6)	97
12.2 Vendor specific object classes	100
12.2.1 General Settings Object (0xA0)	100
12.2.2 Channel Settings Object (0xA1)	102
12.2.3 IO-Link Diagnosis Settings Object (0xA2)	104
12.2.4 IO-Link Port Settings Object (0xA3)	105
12.2.5 IO-Link Failsafe Parameter Object (0xA4)	108
12.2.6 IO-Link Device Parameter Object (0xA5)	109
12.3 Message configuration in Rockwell Automation Studio 5000®	111
13 Diagnostics processing	113
13.1 Error of the system/sensor power supply	113
13.2 Error of the auxiliary/actuator power supply	114
13.3 Overload/short-circuit of the IO port sensor supply outputs	115
13.4 Overload/short circuit of the digital outputs	116
13.5 IO-Link COM error	118
13.6 IO-Link validation error	119
13.7 IO-Link device diagnostics	120
14 IIoT functionality	121
14.1 MQTT	122
14.1.1 MQTT configuration	122
14.1.2 MQTT topics	125
14.1.2.1 Base topic	125
14.1.2.2 Publish topic	128
14.1.3 MQTT configuration - Quick start guide	133
14.1.3.1 MQTT configuration via JSON	133
14.2 OPC UA	135
14.2.1 OPC UA configuration	136
14.2.2 OPC UA address space	138
14.2.3 OPC UA configuration - Quick start guide	139
14.2.3.1 OPC UA configuration via JSON	139

14.3 REST API	141
14.3.1 Standard device information	143
14.3.2 Structure	144
14.3.3 Configuration and forcing	150
14.3.4 Reading and writing ISDU parameters	152
14.3.4.1 Reading ISDU	152
14.3.4.2 Writing ISDU	154
14.3.5 Example: Reading ISDU	156
14.3.6 Example: Writing ISDU	156
14.4 CoAP server	157
14.4.1 CoAP configuration	157
14.4.2 REST API access via CoAP	158
14.4.3 CoAP configuration - Quick start guide	161
14.4.3.1 CoAP configuration via JSON	16′
14.5 Syslog	163
14.5.1 Syslog configuration	163
14.5.2 Syslog configuration - Quick start guide	166
14.5.2.1 Syslog configuration via JSON	166
15 The integrated Web server	168
15.1 LioN-X 0980 XSL variants	169
15.1.1 The Status page	169
15.1.2 The Ports page	170
15.1.3 The System page	17
15.1.4 The User page	173
15.2 LioN-Xlight 0980 LSL variants	174
15.2.1 The System page	174
16 Technical data	176
16.1 General	177
16.2 EtherNet/IP protocol	178
16.3 Power supply of the module electronics/sensors	179

17 Accessories	188
10.7 LEDS	100
16.6.2 Configured as a digital output 16.7 LEDs	185 186
3 1	
16.6.1 Configured as a digital input	184
16.6 IO-Link Master ports Class A, Pin 2	184
16.5.3 Configured as an IO-Link port in COM mode	183
16.5.2 Configured as a digital output	182
16.5.1 Configured as a digital input	181
16.5 IO-Link Master ports Class A, Pin 4	181
16.4 Power supply of the actuators	180

1 About this manual

1.1 General information

Please read the assembly and operating instructions in this manual carefully before starting up the modules. Keep the manual where it is accessible to all users.

The texts, figures, diagrams, and examples used in this manual are used exclusively to explain how to operate and apply the modules.

Please contact us if you have any detailed questions on installing and starting up the devices.

Belden Deutschland GmbH

- Lumberg Automation™ –

Im Gewerbepark 2

D-58579 Schalksmühle

Germany

lumberg-automation-support.belden.com

www.lumberg-automation.com

catalog.belden.com

Belden Deutschland GmbH – Lumberg Automation™ – reserves the right to make technical changes or changes to this manual at any time without notice.

1.2 Explanation of symbols

1.2.1 Use of danger information

Danger information is denoted as follows:

Danger: Means that death, serious physical injury or substantial damage to property will occur if the required safety measures are not taken.

Warning: Means that death, serious physical injury or substantial damage to property can occur if the required safety measures are not taken.

Caution: Means that minor physical injury or damage to property can occur if the required safety measures are not taken.

1.2.2 Use of general information

General information is denoted as follows:

Attention: Contains important information on the product, on how to manage the product, or on the respective section of the documentation to which your special attention is being drawn.

1.3 Version information

Index	Created	Changed
Version number	Version 1.0	Version 1.1
Date	03/2021	04/2021

Index	Changed	Changed
Version number	Version 1.2	
Date	05/2021	

Table 1: Overview of manual revisions

2 Safety instructions

2.1 Intended use

The products described in this manual are decentralized IO-Link Masters on an Industrial Ethernet Network.

We adhere to all safety standards when developing, producing, testing, and documenting our products. When you adhere to the handling specifications and safety instructions described for the configuration, assembly, and correct operation, there should not normally be any risks for people or equipment.

The modules fulfill the requirements of the EMC guidelines (89/336/EEC, 93/68/EEC and 93/44/EEC) and the low voltage guideline (73/23/EEC).

The IO-Link Masters are designed to be used in the industrial sector. The industrial environment is distinguished by the fact that the consumer is not connected directly to the public low voltage network. Additional measures are required for use in residential areas or in business and commercial sectors.

Attention: This equipment may cause radio interference in residential areas. In this case the operator may be requested to carry out appropriate measures.

The proper and safe operation of this product depends on proper transportation, storage, assembly, and installation, and careful operation.

A completely assembled device housing is required for the proper operation of the IO-Link Masters. Only connect devices that fulfill the requirements of EN 61558-2-4 and EN 61558-2-6 to the IO-Link Masters.

During the configuration, installation, start-up, maintenance, and testing of the devices, adhere to the safety and accident-prevention guidelines for the specific application.

Only install cables and accessories that fulfill the requirements and regulations for safety, electromagnetic compatibility, and, where applicable, telecommunication end devices, as well as the specification information.

Information on which cables and accessories are permitted for the installation can be obtained from Lumberg Automation™ or is contained in this manual.

2.2 Qualified personnel

The configuration, installation, start-up, maintenance, and testing of the devices may only be performed by a qualified electrician who is familiar with the safety standards of the automation technology.

The personnel requirements are based on the requirement profiles described by ZVEI, VDMA, or equivalent organizations.

Only electricians who are familiar with the content of this manual are authorized to install and maintain the devices described. These are persons who

- ▶ based on their technical training, knowledge, and experience, and their knowledge of the pertinent standards, can evaluate the work to be carried out and identify any potential risks or
- based on working for several years in a related sector, have the same level of knowledge as they would have from the relevant technical training.

Only Belden Deutschland GmbH – Lumberg Automation $^{\text{TM}}$ – is permitted to make changes to the hardware or software of the products that go beyond the scope of this manual.

Warning: Making unqualified changes to the hardware or software, or non-adherence to the warning information contained in this manual, can result in serious personal injury or damage to equipment.

Attention: Belden accepts no liability for any damage caused by unqualified personnel or improper use. This automatically voids the warranty.

3 Designations and synonyms

API	Application Programming Interface
BF	Bus Fault LED
Big Endian	Data format with High-B on first place (PROFINET and IO-Link)
BUI	Back-Up Inconsistency (EIP diagnostics)
C/Q	I/O port pin 4 mode, IO-Link communication/switching signal
Ch. A	Channel A (Pin 4) of I/O port
Ch. B	Channel B (Pin 2) of I/O port
CIP	Common Industrial Protocol (media independent protocol)
Class A	IO-Link port specification (Class A)
Class B	IO-Link port specification (Class B)
CoAP	Constrained Application Protocol
DCP	Discovery and Configuration Protocol
DevCom	Device Comunicating (EIP diagnostics)
DevErr	Device Error (EIP diagnostics)
DI	Digital Input
DIA	Diagnostic LED
DO	Digital Output
DIO	Digital Input/Output
DTO	Device Temperature Overrun (EIP diagnostics)
DTU	Device Temperature Underrun (EIP diagnostics)
DUT	Device under test
EIP	Ethernet/IP
EIS	EtherNet/IP string
ERP	Enterprise Resource Planning system
ETH	ETHERNET
FE	Functional Earth
FME	Force Mode Enabled (EIP diagnostics)

FSU	Fast Start-Up
GSDML	General Station Description Markup Language
High-B	High-Byte
ICE	IO-Link port COM Error (EIP diagnostics)
ICT	Invalid Cycle Time (EIP diagnostics)
IDE	IO-Link port Device Error (EIP diagnostics)
IDN	IO-Link port Device Notification (EIP diagnostics)
IDW	IO-Link port Device Warning (EIP diagnostics)
lloT	Industrial Internet of Things
ILE	Input process data Length Error (EIP diagnostics)
IME	Internal Module Error (EIP diagnostics)
I/Q	I/O port pin 2 mode, Digital Input/switching signal
I/O	Input / Output
I/O port	X1 - X8
I/O port pin 2	Channel B of X1 - X8
I/O port pin 4 (C/Q)	Channel A of X1 - X8
IOL or IO-L	IO-Link
ISDU	Indexed Service Data Unit
IVE	IO-Link port Validation Error (EIP diagnostics)
I&M	Identification & Maintenance
JSON	JavaScript Object Notation (platform independent data format)
L+	I/O port pin 1, sensor power supply
LioN-X 60	LioN-X variants with a width of 60mm
Little Endian	Data format with Low-B on first place (EtherNet/IP)
LLDP	Link Layer Discovery Protocol
Low-B	Low-Byte
LSB	Least Significant Bit
LVA	Low Voltage Actuator Supply (EIP diagnostics)
LVS	Low Voltage System/Sensor Supply (EIP diagnostics)
MIB	Management Information Base

MP	Multi Protocol (PROFINET + EtherNet/IP + EtherCAT® + Modbus TCP)
MQTT	Message Queuing Telemetry Transport (open networking protocol)
MSB	Most Significant Bit
M12	Metric thread according to DIN 13-1 with 12 mm diameter
OLE	Output process data Length Error (EIP diagnostics)
OPC UA	Open Platform Communications Unified Architecture (platform independent, service-oriented architecture)
PLC	Programmable Logic Controller
PN	PROFINET
PNS	PROFINET string
PWR	Power
REST	REpresentational State Transfer
RFC	Request for Comments
RPI	Requested Packet Interval
SCA	Short Circuit Actuator/U _L /U _{Aux} (EIP diagnostics)
SCS	Short Circuit Sensor (EIP diagnostics)
SNMP	Simple Network Management Protocol
SP	Single Protocol (PROFINET, EtherNet/IP, EtherCAT® or Modbus TCP)
SPE	Startup Parameterization Error (EIP diagnostics)
U _{AUX}	U _{Auxiliary}
UDP	User Datagram Protocol
UL	U _{Load} , supply voltage for the load circuit (Actuator supply on Class A IO-Link Master)
UL	Underwriters Laboratories Inc. (certification company)
UINT16	Unsigned integer with 16 bits or word in PLC (IW, QW)
UINT8	Byte in PLC (IB, QB)

Table 2: Designations and synonyms

4 System description

The LioN modules (Lumberg Automation™ Input/Output Network) function as the interface in an industrial Ethernet system: A central controller on the management level is able to communicate with the decentralized sensors and actuators on the field level. The line or ring topologies for which LioN modules can be used ensure not only reliable data communication but also significantly reduce the number of cables required and thus also the costs for and maintenance. They additionally enable easy and quick extension.

4.1 About LioN-X and LioN-Xlight

LioN-X and the LioN-Xlight variants are IO-Link Masters which convert standard input, standard output or IO-Link signals from sensors & actuators into an industrial Ethernet protocol (PROFINET, EtherNet/IP, EtherCAT®, Modbus TCP) and/or into a cloud protocol (REST API, OPC UA, MQTT). For the first time, there is now Syslog on board. The robust 8 port housing design allows the use even in harsh environments where e.g. weld field immunity, high temperature ranges or protection class IP67 & IP69K are needed. There are also LioN-Xlight single protocol versions available with a limited feature set at a highly attractive price point.

Use all benefits of the Lumberg Automation™ product solution by additionally downloading the configuration tool *LioN-Management Suite V2.0* from www.belden.com to enable e.g. a fast and easy parameterization of the connected IO-Link devices via the embedded IODD interpreter.

4.2 Device variants

The following IO-Link Masters are available in the LioN-X and the LioN-Xlight family:

Article number	Product designation	Description	I/O port functionality
935700001	0980 XSL 3912-121-007D-00F	LioN-X M12-60 mm, IO-Link Master Multiprotocol Security	8 x IO-Link Class A
935701001	0980 LSL 3011-121-0006-001	LioN-Xlight M12-60 mm, IO-Link Master PROFINET	8 x IO-Link Class A
935702001	0980 LSL 3010-121-0006-001	LioN-Xlight M12-60 mm, IO-Link Master PROFINET	4 x IO-Link Class A + 8 x DI
935701002	0980 LSL 3111-121-0006-002	LioN-Xlight M12-60 mm, IO-Link Master EtherNet/IP	8 x IO-Link Class A
935702002	0980 LSL 3110-121-0006-002	LioN-Xlight M12-60 mm, IO-Link Master EtherNet/IP	4 x IO-Link Class A + 8 x DI
935701004	0980 LSL 3311-121-0006-008	LioN-Xlight M12-60 mm, IO-Link Master Modbus TCP	8 x IO-Link Class A
935702004	0980 LSL 3310-121-0006-008	LioN-Xlight M12-60 mm, IO-Link Master Modbus TCP	4 x IO-Link Class A + 8 x DI
935701003	0980 LSL 3211-121-0006-004	LioN-Xlight M12-60 mm, IO-Link Master EtherCAT®	8 x IO-Link Class A

Article number	Product designation	Description	I/O port functionality
935702003	0980 LSL 3210-121-0006-004	LioN-Xlight M12-60 mm, IO-Link Master EtherCAT®	4 x IO-Link Class A + 8 x DI

Table 3: Overview of LioN-X and LioN-Xlight variants

4.3 I/O port overview

The following tables show the main I/O port differences of the LioN-X IO-Link Master family. Pin 4 and Pin 2 of the I/O ports can be configured partly to IO-Link, Digital Input or Digital Output.

LioN-X

Device variant:	Port	Pin 1 U _S	Pin 4 / Ch. A (C/Q)				Pin 2 /	Ch. B (I/Q)
	Info:	_	Class A	Type 1	Supply by U _S ¹⁾	Supply by U _L ²⁾	Type 1	Supply by U _L ²⁾
					by U _S	by UL		by UL
	X8:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
	X7:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
0980 XSL	X6:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
3x12	X5:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
	X4:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
	X3:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
	X2:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)
	X1:	Out (4 A)	IOL	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)

Table 4: Port configuration of 0980 XSL 3x12... variants

¹⁾ DO switch mode configured as "Push-Pull" (description in the configuration chapters).

²⁾ DO switch mode configured as "High-Side" (description in the configuration chapters).

LioN-Xlight

Device variant:	Port	Pin 1 U _S	Pin 4 / Ch. A (C/Q)			Pin 2 / Ch. B (I/Q)
	Info:	_	Class A	Type 1	Supply by U _S ¹⁾	Type 1
	X8:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	X7:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
0000101	X6:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
0980 LSL 3x11	X5:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	X4:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	Х3:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	X2:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	X1:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI

Table 5: Port configuration of 0980 LSL 3x11... variants

Device variant:	Port	Pin 1 U _S	ı	Pin 4 / Ch. A	Pin 2 / Ch. B (I/Q)	
	Info:	_	Class A	Type 1	Supply by U _S ¹⁾	Type 1
	X8:	Out (0.7 A)	_	DI	_	DI
	X7:	Out (0.7 A)	-	DI	_	DI
0000101	X6:	Out (0.7 A)	_	DI	-	DI
0980 LSL 3x10	X5:	Out (0.7 A)	_	DI	_	DI
	X4:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	X3:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	X2:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI
	X1:	Out (2 A)	IOL	DI	DO (0.5 A*)	DI

Table 6: Port configuration of 0980 LSL 3x10... variants

¹⁾ With DO Switch Mode configured as "Push-Pull" (see description in the configuration chapters).

^{*} For **UL applications**: Max. 0.25 A DO.

5 Overview of product features

5.1 EtherNet/IP product features

Data connection

The connection option provided by LioN-X is the widely-used M12 connector with D-coding for the EtherNet/IP network.

The connectors are also color-coded to prevent the ports from being mixed up.

Data transmission rates

Featuring a transmission rate of up to 10/100 MBit/s, the EtherNet/IP devices can handle both fast transmission of I/O data and transmission of larger volumes of data.

EtherNet/IP Adapter Device

The LioN-X and LioN-Xlight IO-Link Master variants support the EtherNet/IP protocol. This allows the transmission of time sensitive process data between network components in real-time communication.

ODVA CIP specification V3.27

The LioN-X and LioN-Xlight IO-Link Master variants comply with ODVA CIP specification V3.27.

Integrated switch

The integrated Ethernet switch has two EtherNet/IP ports and thus supports the establishment of a line or ring topology for the EtherNet/IP network.

DHCP/BOOTP

The supported Dynamic Host Configuration Protocol (DHCP) and the Bootstrap Protocol (BOOTP) provide

mechanisms for automatic obtaining of an IP address from a server managing the devices.

Device Level Ring

The additionally implemented Device Level Ring (DLR) enables the design of a highly available network infrastructure of up to 50 DLR ring nodes. If a connection is interrupted, the LioN-X devices immediately switch to an alternative ring segment and thus ensure interruption-free operation. These DLR ring nodes are "beacon-based" according to the EtherNet/ IP specification.

SNMP

The SNMPv1 protocol handles network component monitoring and communication between the master and device.

Diagnostic data

The devices support diagnosis flags and extended diagnostic data that can be appended to the I/O data.

EDS-based configuration and parameterization of the I/O ports

The EDS offers the option of configuring and parameterizing the I/O ports on the master devices.

5.2 I/O port features

IO-Link specification.

LioN-X is ready for IO-Link specification v1.1.3.

8 x IO-Link Master ports

Depending on the device variant, the device has 4 Class A or 8 Class A ports with an additional hard-wired digital input on pin 2 of the I/O port. For detailed information see chapter I/O port overview on page 20.

Warning: If devices with electric isolation and devices without electric isolation are used within the same system, the electric isolation of all connected devices is annulled

IO-Link port connections

The IO-Link port connection option provided by the device series is the 5-pin M12 connector (Pin 5 not used at IO-Link Class A ports).

Validation & Backup

The Validation & Backup function checks if the right device is connected and stores the parameters of the IO-Link Device. The function thus gives you an easy option for replacing the IO-Link Device.

This is possible as of IO-Link specification V1.1 and only if the IO-Link Device **and** the IO-Link Master support the function

IO-Link Device parameterization

IO-Link Device parameterization in EtherNet/IP via vendor specific IO-Link Device parameter object class and Read/Write ISDU services.

LED

You can see the status of a port by the color of the matching LEDs and their flash pattern. For details on the

meanings of the LED colors, please see section LEDs on page 186.

5.3 Integrated Web server

Network parameter display

Get an overview of network parameters such as the IP address, subnet mask and gateway.

Displaying diagnostics

View diagnostics via the integrated Web server.

User management

Use the integrated Web server for convenient management of all users.

IO-Link Device parameters

You can read the IO-Link Device parameters and write new parameters in single write mode (single write mode doesn't activate the automated mechanism of the "Validation and Backup" function) to the IO-Link Device.

5.4 Security features

Firmware signature

All official firmware update packages contain a signature which prevents the system against manipulated firmware updates.

Syslog

The LioN-X multiprotocol variants support the traceability of messages centrally managed and logged via Syslog.

User manager

The Web server provides a user manager to protect the Web interface against unauthorized access. You can manage the allowed users by different access levels "Admin" or "Write".

Default user settings:

User: admin

Password: private

Attention: Change the default settings to protect the device against unauthorized access.

5.5 Other features

Interface protection

The modules have reverse polarity, short-circuit and overload protection for all interfaces.

For more details, see section Port assignments on page 33.

Failsafe

The modules support a failsafe function. This allows you to define the behavior of every single channel configured as an output in the case of a loss of the PLC communication.

Industrial Internet of Things

LioN-X is industry 4.0 ready and supports the integration in IIoT networks via REST API and the IIoT-relevant protocols MQTT, OPC UA and CoAP.

Color-coded connectors

The green-colored connectors help you avoid confusion in your cabling.

IP protection classes: IP65 / IP67 / IP69k

The IP protection class describes environmental influences that the devices can be exposed to without risk and without suffering damage, or causing a risk for the user

The whole LioN-X family offers IP65, IP67 and IP69k.

6 Assembly and wiring

6.1 General information

Mount the device on a flat surface using 2 screws (M4x 25/30). The torque required here is 1 Nm. Use washers for all fastening methods as per DIN 125.

Attention: The devices have a ground connection with an M4 thread for the conduction of interference currents and the EMC immunity. This is labeled with the symbol for the ground and the designation "FE"

Attention: Use a low-impedance connection to connect the device to the reference ground. When using a grounded mounting surface, you can make the connection directly via the fixing screws.

Attention: If the mounting surface is ground-free, use a ground strap or a suitable FE line (FE = Functional Earth). Use an M4 screw to connect the ground strap or the FE line to the ground point and if possible put a washer and a toothed washer below the fixing screw.

6.2 Outer dimensions

6.2.1 LioN-X multiprotocol variants

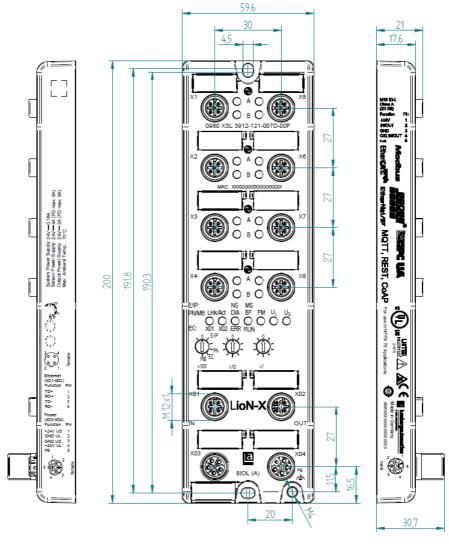


Figure 1: 0980 XSL 3912-121-007D-00F

6.2.2 LioN-Xlight variants with EtherNet/IP

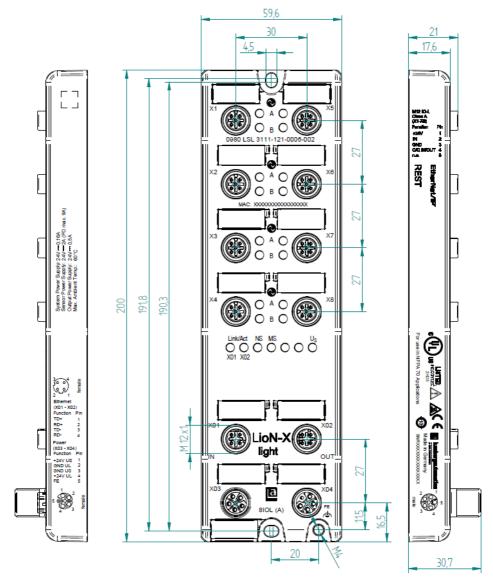


Figure 2: 0980 LSL 3111-121-0006-001

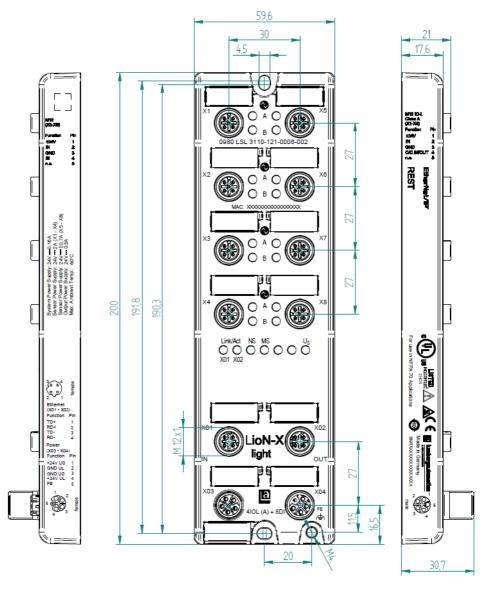


Figure 3: 0980 LSL 3110-121-0006-001

6.2.3 Notifications

Attention:

For **UL applications**, be sure to use a UL-certified cable with a suitable evaluation to connect the devices (CYJV or PVVA). To program the control, please refer to the OEM information, and only use suitable accessories.

Only approved for interior use. Please note the maximum elevation of 2000 meters. Approved up to a maximum soiling level of 2.

Warning: Terminals, housings field-wired terminal boxes or components can exceed temperatures of +60 °C (140 °F).

Warning: For **UL applications** at a maximum ambient temperature of +70 °C (158 °F):

Use temperature-resistant cables with heat resistance up to at least +115 °C (239 °F) for all LioN-X and LioN-Xlight variants.

Warning: Observe the following maximum output power for the sensor supply:

Max. 2.0 A per channel; max. 6.5 A in total (for **UL applications** max. 5 A in total) for every port pair (X1/X2, X3/X4, X5/X6, X7/X8); max. 9.0 A in total (with derating) for the whole port group (X1 .. X8).

6.3 Port assignments

All the contact arrangements shown in this chapter show the frontal view of the connection area for the connectors.

6.3.1 Ethernet ports, M12 socket, 4-pin, D-coded

Color coding: green

Figure 4: Schematic drawing, ports X01, X02

Port	Pin	Signal	Function
Ethernet	1	TD+	Transmit data plus
Ports X01, X02	2	RD+	Receive data plus
	3	TD-	Transmit data minus
	4	RD-	Receive data minus

Table 7: Assignment of ports X01, X02

Caution: Risk of destruction! Never connect the power supply to the data cables.

6.3.2 Power supply with M12 power L-coded

Color coding: gray

Figure 5: Schematic diagram of the M12 L-coding (connector X03 for Power In)

Figure 6: Schematic diagram of the M12 L-coding (socket X04 for Power Out)

Power supply	Pin	Signal	Function
	1	U _S (+24 V)	Sensor/system power supply
	2	GND_U _L	Ground/reference potential U _L
	3	GND_U _S	Ground/reference potential U _S ¹
	4	U _L (+24 V)	Load supply (NOT electrically isolated to U _S internally in device)
	5	FE (PE)	Functional ground

Table 8: Power supply with M12-Power

Attention: Only use power supply units for the system/sensor and actuator supply that correspond to PELV (Protective Extra Low Voltage) or SELV (Safety Extra Low Voltage). Power supplies

¹ U_I and U_S ground connected in device

according to EN 61558-2-6 (transformers) or EN 60950-1 (switching power supply units) fulfill these requirements.

6.3.3 I/O ports as M12 sockets

6.3.3.1 IO-Link Class A

Color coding: black

Figure 7: Schematic drawing I/O port as M12 socket IO-Link Class A

0980 XSL 3x12-121	Pin	Signal	Function
IO-Link Class A, ports X1 - X8	1	+24 V	power supply +24 V
	2	IN/OUT	Ch. B: Digital inputs or digital outputs
	3	GND	Ground/reference potential
	4	C/Q IN/OUT	Ch. A: IO-Link data communication, digital input or digital output
	5	n.c.	not connected
		ļ.	
0980 LSL 3x11-121	Pin	Signal	Function
IO-Link Class A, ports	Pin 1	Signal +24 V	Function power supply +24 V
IO-Link Class A, ports	1	+24 V	power supply +24 V

0980 LSL 3x10-121	Pin	Signal	Function
IO-Link Class A, ports X1 - X4	1	+24 V	power supply +24 V
X1 - X4	2	IN	Ch. B: Digital inputs
	3	GND	Ground/reference potential
	4	C/Q IN/OUT	Ch. A: IO-Link data communication, digital input or digital output
	5	n.c.	not connected
IO-Link Class A, ports	1	+24 V	power supply +24 V
X5 - X8	2	IN	Ch. B: Digital inputs
	3	GND	Ground/reference potential
	4	C/Q IN	Ch. A: IO-Link data communication, digital input
	5	n c	not connected

not connected

Table 9: I/O ports as M12 socket IO-Link Class A

7 Starting operation

7.1 EDS file

An EDS file describes the EtherNet/IP device and can be installed in the engineering tool for the configuration of the LioN-X device. Each of the LioN-X variants requires its own EDS file. The file can be downloaded from the product pages on our online catalog: catalog.belden.com

On request, the EDS file is also sent to you by the support team.

The EDS files are grouped together in an archive file named **EDS-V3.27.1-BeldenDeutschland-LioN-X-yyyymmdd.eds**.

yyymmdd stands for the date on which the file was issued.

Download this file and unpack it.

Install the EDS file for the respective device variant by using the hardware or network configuration tool of your controller manufacturer.

In Rockwell Automation Studio $5000^{\mathbb{R}}$, install the files with the *EDS Hardware Installation Tool*.

The LioN-X and LioN-Xlight variants are then available in the hardware catalog as *Communications Adapter*.

7.2 MAC addresses

Every device has three unique assigned MAC addresses that cannot be changed by the user. The first assigned MAC address is printed onto the device.

7.3 State on delivery

EtherNet/IP parameters in state on delivery or after a factory reset:

Network mode:	DHCP
Static IP address:	192.168.1.XXX (XXX = rotary switch position or last stored data)
Subnet mask:	255.255.255.0
Gateway address	0.0.0.0
Device designations:	0980 XSL 3912-121-007D-00F 0980 LSL 3111-121-0006-002 0980 LSL 3110-121-0006-002
Vendor code:	21
Product type:	12 (Communications Adapter)

7.4 Setting network parameters

There are multiple ways to configure the network parameters. By default, DHCP is enabled and the network parameters are requested by DHCP requests to a server. If you want to request the network parameters with BOOTP requests, you must activate the BOOTP function through the Web interface or the TCP/IP interface object (CIP Class ID 0xF5, attribute 3 (0x03)). It is also possible to set static network parameters via this CIP object.

7.4.1 IP address for LioN-X variants

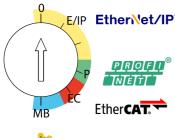
The LioN-X multiprotocol variants support IP address configuration via the three rotary encoding switches on the front of the device (see chapter Setting the rotary encoding switches on page 40). The network parameters are also settable via the Web interface, the IIoT protocols or the LioN Management Suite.

7.4.2 IP address for LioN-Xlight variants

The LioN-Xlight variants cannot be configured via rotary encoding switches. If your network does not provide a DHCP server, you can set a static IP address via the NetIdent protocol in the LioN Management Suite.

7.5 Setting the rotary encoding switches

Attention: Only applicable for LioN-X multiprotocol variants; not applicable for LioN-Xlight variants.


The LioN-X multiprotocol variants allow you to select different protocols for communication within an industrial Ethernet system. In this way the IO-Link Masters with multiprotocol function can be integrated into different networks without it being necessary to purchase products specific for each protocol. This technology also gives you the option to use the same IOL-Master in different environments.

Using rotary encoding switches at the lower front of the devices, you can easily and conveniently set both the protocol and the address of the device, if the protocol to be used supports this. Once you have made a protocol selection and started the cyclical communication, the device stores this setting permanently and uses the selected protocol from this point on. To use another supported protocol with this device, perform a factory reset.

The following LioN-X IO-Link Master variants support multiprotocol application for the protocols EtherNet/IP (E/IP), PROFINET (P), EtherCAT® (EC) and Modbus TCP (MB):

▶ 0980 XSL 3912-121-007D-00F

The multiprotocol devices have a total of three rotary encoding switches. With the first rotary encoding switch (x100) you set the protocol by using the corresponding switch position. Additionally, x100 is used to set the third last digit of the IP address for EIP.

With the other rotary encoding switches (x10 / x1), you set the last two digits of the IP address when you are using EtherNet/IP or Modbus TCP.

Protocol	x100	x10	x1
EtherNet/IP	0-2	0-9	0-9
PROFINET	Р	-	-
EtherCAT®	EC	-	-
Modbus TCP	МВ	0-9	0-9

Table 10: Assignment of the rotary encoding switches for each protocol

The setting you make to select a protocol is described detailed in the protocol-specific sections.

In delivery state no protocol settings are stored in the device. In this case only the desired protocol has to be chosen. To take over a changed rotary encoding switch setting (protocol setting), a power cycle or "Reset" from the Web interface is necessary.

Once you have set the protocol using the rotary encoding switches, the device stores this setting when it starts in cyclic communication. Changing the protocol using the rotary encoding switch is no longer possible after this point. The device will always start using the stored protocol from that point on. The IP address can be changed depending on the selected protocol.

To change the protocol, carry out a factory reset. In this way you restore the factory settings of the respective device. How you perform the factory reset for your device is described in chapter Factory reset on page 43.

If you position the rotary encoding switch in a manner that is invalid, the device signals this to you with a blink code (the BF/MS LED blinks in red three times).

7.5.1 EtherNet/IP selection and IP configuration via rotary encoding switches

The EtherNet/IP protocol can be selected by the first rotary encoding switch (x100) with a value between 0-2.

Use all three rotary encoding switches on the front of the device to set the last octet of the static IP address. The first three octets of the IP address are set by default to 192.168.1.

Each rotary encoding switch in the EtherNet/IP setting is assigned to one decimal digit, so that you can configure a number between 0-299. During start-up, the position of the rotary encoding switches is typically read within one time cycle.

For example, the rotary encoding switch setting 2 (x100), 1 (x10) and 0 (x1) is interpreted by default as the IP address 192.168.1.210.

Rotary encoding switch setting	Function
000 (state on delivery, default setting)	On delivery, the DHCP function is enabled. The network parameters are requested by DHCP requests to a server. If you want to request the network parameters with BOOTP requests, you must activate the BOOTP function through the Web server or the TCP/IP interface object (CIP Class ID 0xF5, attribute 3 (0x03)). The network parameters are not saved automatically, but the integrated Web server can be used to save them.
000 (network parameters already saved)	The network parameters last saved are used (IP address, subnet mask, gateway address, DHCP on/off, BOOTP on/off).
001 254	The last 3 digits of the saved or preset IP address are overwritten by the setting of the rotary encoding switches. DHCP or BOOTP are disabled if necessary, and the device will start up with a static IP address.
255 298	The network parameters are requested through DHCP or BOOTP but are not saved.
299	The factory default setting of the IP address (192.168.001.001) is used.
979	The device performs a reset to the factory settings. The network parameters are also reset to the default values. Communication is not possible in this operation mode.

Table 11: Setting options of the rotary encoding switches for EtherNet/IP

7.5.2 Factory reset

A factory reset restores the original factory settings and thus resets the changes and settings you have made up to that point. It also resets the protocol selection. To perform a factory reset, set the first rotary encoding switch (x100) to 9, the second (x10) to 7, and the third (x1) also to 9.

Afterwards perform a power cycle and wait 10 seconds due to internal memory write processes.

During the factory reset, the U_S LED is blinking red. After the internal memory write processes have finished, the U_S LED returns to display static green or red light, in dependency of the actual U_S voltage.

	x100	x10	x1
Factory Reset	9	7	9

Follow the steps from section Setting the rotary encoding switches on page 40 again to select a new protocol.

For performing a factory reset via software configuration, see chapter OPC UA configuration on page 136 and the configuration section.

8 Configuration EtherNet/IP

The devices support **Implicit Messaging** and **Explicit Messaging** for the EthetNet/IP communication. I/O process data is transferred cyclically via the assembly object connection using **Implicit Messaging**.

Non-critical low priority data, configuration settings and diagnostic data can be exchanged via acyclic messages using **Explicit Messaging**. The exchange is done via EtherNet/IP and vendor specific object classes. For more details on object classes, see chapter CIP object classes on page 84.

8.1 Assembly types

The LioN-X devices support three different assembly types which are defined as follows:

Assembly ID	Assembly Name	Size	Payload
130	Output Connection Point Assembly	0260 Byte	Consuming Data Image
131	Input Connection Point Assembly	0446 Byte	Producing Data Image
145	Configuration Assembly	0 or 480 Byte	Module Configuration Data

The **Consuming Data Image** and the **Producing Data Image** have dynamic sizes which depend on the complete input and output data size of all connected IO-Link devices and on additional input status information. The general input and output process data sizes of each connection can be configured in the engineering tool. Each IO-Link device process data size can be configured by the **Module Configuration Data**.

The contents of the **Consuming Data Image** and the **Producing Data Image** are specified in chapter Process data assignment on page 70.

The **Module Configuration Data** is defined in chapter Configuration parameters on page 48.

8.2 Connections

The LioN-X devices support two different connection types which are defined as follows:

Connect- ion name	Connect- ion type	Output connect- ion point assembly	Output data size	Input connect- ion point assembly	Input data size	Configu- ration assembly	Configu- ration data size
IO-Link (Exclusive Owner)	Exclusive Owner	130	0260 Byte	131	0446 Byte	145	0 or 480 Byte
IO-Link (Listen Only)	Listen Only	192	0	131	0446 Byte	n/a	0 Byte

The dynamic data sizes depend on the complete input and output data size of all connected IO-Link devices and additional input status information. The general input and output process data sizes of each connection can be configured in the engineering tool. Each IO-Link device process data size can be configured by the **Module Configuration Data**.

Some engineering tools require the immediate configuration of the connection parameters. For the configuration use the parameters listed in the following chapters.

8.2.1 IO-Link parameters (Exclusive Owner)

Connection properties		
Connection name	IO-Link (Exclusive Owner)	
Application type	Exclusive Owner	
Trigger mode	Cyclic	
RPI	min. 1 ms	

Connection parameters (O->T)		
Real time transfer format	32 Bit Run/Idle Header	
Connection type	POINT2POINT	
Assembly ID	130	
Data size	0260 Byte	
Data type	INT (2 Byte)	

Connection parameters (T->0)		
Real time transfer format	Pure data and modeless	
Connection type	MULTICAST, POINT2POINT	
Assembly ID	131	
Data size	0446 Byte	
Data type	INT (2 Byte)	

8.2.2 IO-Link parameters (Listen Only)

Connection properties		
Connection name	IO-Link (Listen Only)	
Application type	Listen Only	
Trigger mode	Cyclic	
RPI	min. 1 ms	

Connection parameters (O->T)		
Real time transfer format	Heartbeat	
Connection type	POINT2POINT	
Assembly ID	192	
Data size	0 Byte	
Data type	INT (2 Byte)	

Connection parameters (T->O)		
Real time transfer format	Pure data and modeless	
Connection type	MULTICAST	
Assembly ID	131	
Data size	0446 Byte	
Data type	INT (2 Byte)	

9 Configuration parameters

Parameters of the LioN-X device can be configured via the configuration assembly, CIP object classes, Web server or IIoT protocols. A configuration assembly is sent when an **Exclusive Owner** connection is established. They are optional in this assembly. However, when sending, all existing parameters will be overwritten by this data. Therefore, the content of the configuration assembly has the highest valence.

To avoid parameter overwriting by CIP object classes, Web server or IIoT protocols during operation, some lock parameters can be enabled in the PLC configuration respectively configuration assembly.

The following chapters represent different setting groups with its configuration parameters. They are ingredients of the configuration assembly and can be set via **Explicit Messaging** by the specified CIP object classes. The **default values** are highlighted.

9.1 General settings

Configuration parameter	Byte offset config. assembly	Data type	Valid values	CIP object class 0xA0, Instance 1
Force Mode Lock	1	SINT	0: Disable 1: Enable	Attribute 2
Web Interface Lock	2	SINT	0: Disable 1: Enable	Attribute 3
Digital Output Control	3	SINT	0: DO Channel Control 1: IO-Link Control	Attribute 4
Report U _L /U _{Aux} Supply Voltage Fault	4	SINT	0: Disable 1: Enable	Attribute 5
Report DO Fault without U _L /U _{Aux}	5	SINT	0: Disable 1: Enable	Attribute 6
CIP object configuration lock	24	SINT	0: Disable 1: Enable	Attribute 25
External configuration lock	25	SINT	0: Disable 1: Enable	Attribute 26
IO Mapping Mode	31	SINT	0: Default Assignment 1: Byte Swap 2: LSB Ch.A - MSB Ch.B 3: LSB Ch.B - MSB Ch.A 4: Free IO Mapping	Attribute 32

9.1.1 Force Mode Lock

The input and output process data can be forced for implementation reasons via different interfaces (e.g. Web interface, REST, OPC- UA, MQTT). The support of interfaces depends on the available software features. If the **Force Mode Lock** is enabled, it is no longer possible to force input and output process data through these interfaces.

Danger: Risk of physical injury or death! Unattended forcing can lead to unexpected signals and uncontrolled machine movements.

9.1.2 Web Interface Lock

The Web interface access can be configured. If **Web Interface Lock** is enabled, the Web pages are no longer reachable.

9.1.3 Digital Output Control

A digital output can only have one control source. With the parameter **Digital Output Control**, you can configure the DO Channel Control (first two bytes of the output data) or the IO-Link Output Data (first byte of each IO-Link device output data) as the control source.

9.1.4 Report U_L/U_{Aux} Supply Voltage Fault

During commissioning, it is possible that no power supply is connected to the U_L/U_{Aux} pins. Therefore it can be helpful to suppress and disable the **Report** U_L/U_{Aux} Supply Voltage Fault diagnosis.

9.1.5 Report DO Fault without U_L/U_{Aux}

With this parameter you suppress the actuator diagnosis message that is sent if no U_L/U_{Aux} supply is connected while the output data of a digital channel is controlled.

9.1.6 CIP object configuration lock

All configuration parameters can be set by vendor specific CIP object classes. To avoid parameter changes when a cyclic connection is already established, the setting function of these objects can be locked.

9.1.7 External configuration lock

Configuration parameters can be set via different alternative interfaces (e.g. Web interface, REST, OPC-UA, MQTT). An external configuration

can only be done if no connection is established or if the **External configuration lock** is disabled during cyclic communication. Every new PLC configuration, transmitted through the configuration assembly, overwrites the device parameters.

9.1.8 IO Mapping Mode

The LioN-X devices support 5 different I/O mapping modes for the **Digital Output Channel Control** and the **Input Channel Status**. Modes 0 to 3 are pre-defined bit mappings. Mode 4 is a free user defined mapping which can be used in conjunction with the I/O mapping of channel 1..16 in the channel settings.

Default Assignment (Mode 0):

DO Ch. Control / DI Ch. Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0 (LSB)	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A
Byte 1 (MSB)	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A

Byte Swap (Mode 1):

DO Ch. Control / DI Ch. Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0 (LSB)	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A
Byte 1 (MSB)	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A

LSB Ch.A - MSB Ch.B (Mode 2):

DO Ch. Control / DI Ch. Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0 (LSB)	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A
Byte 1 (MSB)	X8B	X7B	X6B	X5B	X4B	ХЗВ	X2B	X1B

LSB Ch.B - MSB Ch.A (Mode 3):

DO Ch. Control / DI Ch. Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0 (LSB)	X8B	X7B	X6B	X5B	X4B	ХЗВ	X2B	X1B
Byte 1 (MSB)	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A

Free IO Mapping (Mode 4):

IO Mapping Channel 1..16 is used (see chapter Channel settings on page 53).

9.2 Channel settings

Configuration parameter	Byte offset config. assembly	Data type	Valid values	CIP object class 0xA1, Instance 116
IO Mapping (Ch116)	32	SINT[16]	015 : Bit number of 16 channel process data 16: Inactive	Attribute 1
DO Surveillance Timeout (Ch116)	48	INT[16]	0255 (80)	Attribute 2
DO Failsafe (Ch116)	80	SINT[16]	0: Set Low 1: Set High 2: Hold Last	Attribute 3
DO Restart Mode (Ch116)	96	SINT[16]	0: Disable 1: Enable	Attribute 4
DO Switch Mode	112	SINT[16]	0: Push-Pull (U _S , 0.5 A) 1: High-Side (U _L , 0.5 A) 2: High-Side (U _L , 1.0 A) 3: High-Side (U _L , 1.5 A) 4: High-Side (U _L , 2.0 A) 5: High-Side (U _L , 2.0 A) max)	Attribute 5
DI Logic (Ch116)	128	SINT[16]	0: Normally Open 1: Normally Close	Attribute 6
DI Filter (Ch116)	144	SINT[16]	0: Disabled 1: 1 ms 2: 2 ms 3: 3 ms 4: 6 ms 5: 10 ms 6: 15 ms	Attribute 7

Configuration parameter	Byte offset config. assembly	Data type	Valid values	CIP object class 0xA1, Instance 116
Channel Mode (Ch116)	192	SINT[16]	0: Inactive 1: Digital Output 2: Digital Input 3: IO-Link (if available) The default value depends on the device variant.	Attribute 10

Assignment of channels:

Channel 1	Port X1.ChA	CIP object instance 1	
Channel 2	Port X1.ChB	CIP object instance 2	
[]	[]	[]	
Channel 15	Port X8.ChA	CIP object instance 15	
Channel 16	Port X8.ChB	CIP object instance 16	

9.2.1 IO Mapping (Ch1..16)

These configuration parameters can be used to set a user defined IO mapping. It is valid for the input and output data direction. Duplicated assignment are not allowed. In case of an inconsistent mapping, the complete assembly configuration is rejected with an error code.

To use these parameters, it is required to configure the IO mapping mode of the **General settings** to **Free IO Mapping (Mode 4)**. The default value for each parameter is its own channel number.

9.2.2 DO Surveillance Timeout (Ch1..16)

The digital output channels are monitored during runtime. The error states are detected and reported as a diagnosis. To avoid error states during the switching of output channels, the surveillance timeout can be configured as a delay with deactivated monitoring.

The delay time begins with a rising edge of the output control bit. After delay time has elapsed, the output is monitored and error states are reported by diagnosis. When the channel is permanently switched on or off, the typical filter value (not changeable) is 5 ms.

9.2.3 DO Failsafe (Ch1..16)

The LioN-X devices support a failsafe function for the channels used as digital outputs. In case of an internal device error, the PLC is in STOP state and cannot provide valid process data. The connection is interrupted or the communication is lost. The outputs are controlled according to the configured failsafe values.

Set Low:

If failsafe is active, the physical output pin of the channel is set to low (0).

Set High:

If failsafe is active, the physical output pin of the channel is set to high (1).

Hold Last:

If failsafe is active, the physical output pin of the channel holds the last valid process data state (0 or 1).

9.2.4 DO Restart Mode (Ch1..16)

In case of a short circuit or overload at an output channel, a diagnosis is reported and the output is switched to "off".

If the **DO Restart Mode** for this channel is enabled, the output will automatically be turned on again after a fix time delay for checking if the overload or short circuit condition is still active. When it is active, the channel is switched off again.

If the **DO Restart Mode** is disabled, the output channel is not automatically turned on again. It can be turned on after a logical reset of the process output data of the channel.

9.2.5 DO Switch Mode (Ch1..16)

Only applicable for the following device variant:

0980 XSL 3912-121-007D-00F

With this parameter you can configure the current limitations for the digital outputs by selecting a DO Switch Mode. You can choose between two different output switch modes:

Push-Pull (U_S,0.5 A):

If a channel is set to "Push-Pull", the output will be switched active to high or low. In low state, the output can be a current sink. The digital output is supplied by U_S with a maximum current of $0.5\,A$. This option is not available for the channel B of any port.

High-Side (U_L, 0.5 A..2.0 A max):

If a channel is set to "High-Side", the output will be switched active to high but not to low. In low state, the output has a high impedance. The digital output is supplied by U_L or U_{Aux} , depending on the device variant, and has a selectable current limit. This means that the actuator channel error diagnosis is reported when this limit is exceeded. If the you set the level to $2.0\ A\ Max$., the current limitation is not active and the maximum output current is available.

Refer to chapter I/O port overview on page 20 to get the available voltage supply for the digital outputs of every LioN-X variant.

9.2.6 DI Logic (Ch1..16)

The logical state of an input channel can be configured via these parameters. If a channel is set to "Normally Open", a low signal ("0") is transferred to the process input data (e.g. if a non-damped sensor has an open switching output).

If a channel is set to "Normally Close", a high signal ("0") is transferred to the process input data (e.g. if a non-damped sensor has a closed switching output).

The channel LED shows, independent of these settings, the physical input state of the port pin.

9.2.7 DI Filter (Ch1..16)

A filter time for every digital input channel can be configured by these parameters. When there is no need for a filter it can be disabled.

9.2.8 Channel Mode (Ch1..16)

The operation mode of every channel can be configured by these parameters. The usability of this setting depends on the hardware variant and can be found out in the description (e.g. for a 8 IO-Link Class A Master, an IO-Link mode can only be configured for channel A and not for channel B).

Inactive:

This mode should be selected when the channel is not in use.

Attention: If channel A of a port is set to inactive, the corresponding channel B is also set to inactive regardless of its configuration. In this case, the entire port is therefore deactivated.

Digital Output:

In this mode, the channel operates as digital output. The channel can be controlled by the **Digital Output Channel Control** (first two bytes of the output data) or by the **IO-Link Output Data** (first byte of each IO-Link device output data) of the cyclic process data. This depends on the **Digital Output Control** parameter of the **General Settings**.

Digital Input:

In this mode, the channel operates as digital input. The channel state can be seen in the **Digital Input Channel Status** of the cyclic process data.

IO-Link:

In this mode, the channel tries to establish a communication with an IO-Link Device. IO-Link process data can be exchanged via a communication link between the IO-Link Master and the IO-Link Device. The size of the IO-Link input and output data as well as the port mode depend on the IO-Link port settings.

Attention: Not all channels support this configuration.

9.3 IO-Link diagnosis settings

Configuration parameter	Byte offset config. assembly	Data type	Valid values	CIP object class 0xA2, Instance 1
IO-Link Master Diagnosis	208	SINT	0: Disable 1: Enable	Attribute 1
IO-Link Device Error	209	SINT	0: Disable 1: Enable	Attribute 2
IO-Link Device Warning	210	SINT	0: Disable 1: Enable	Attribute 3
IO-Link Device Notification	211	SINT	0: Disable 1: Enable	Attribute 4
IO-Link Device Diagnosis Port 18	212219	SINT[8]	0: Disable 1: Enable	Attribute 512

9.3.1 IO-Link Master Diagnosis

If this parameter is enabled, the **IO-Link Master Diagnosis** is transferred to the IO-Link diagnoses of the input process data. If configured, additional diagnoses and information are transferred in the **IO-Link Extended Status** and in the **IO-Link events**.

If this parameter is disabled, no IO-Link Master Diagnosis is reported.

9.3.2 IO-Link Device Error

If this parameter is enabled, the **IO-Link Device Errors** are transferred in the IO-Link diagnoses of the input process data. If configured, additional diagnoses and information are transferred in the **IO-Link Extended Status** and the **IO-Link events**.

If this parameter is disabled, no **IO-Link Device Error** is reported.

9.3.3 IO-Link Device Warning

If this parameter is enabled, the **IO-Link Device Warnings** are transferred in the IO-Link diagnoses of the input process data. If configured, additional

diagnoses and information are transferred in the IO-Link Extended Status and the IO-Link events.

If this parameter is disabled, no **IO-Link Device Warning** is reported.

9.3.4 IO-Link Device Notification

If this parameter is enabled, the **IO-Link Device Notifications** are transferred in the IO-Link diagnoses of the input process data. If configured, additional diagnoses and information are transferred in the **IO-Link Extended Status** and the **IO-Link events**.

If this parameter is disabled, no IO-Link Device Notification is reported.

9.3.5 IO-Link Device Diagnosis Port 1..8

If this parameter is enabled for an IO-Link port, the respective diagnoses are transferred in the IO-Link diagnoses of the input process data. If configured, additional diagnoses and information are transferred in the **IO-Link Extended Status** and the **IO-Link events**.

If this parameter is disabled for an IO-Link port, no respective diagnosis is reported.

9.4 IO-Link Port 1..8 settings

Configuration parameter	Byte offset config. assembly	Data type	Valid values	CIP object class 0xA3, Instance 18
Output Data Size	224, 256, 288, 320, 352, 384, 416, 448	SINT	0: No data 1: 2 Byte 2: 4 Byte 3: 8 Byte 4: 16 Byte 5: 32 Byte	Attribute 1
Input Data Size	225, 257, 289, 321, 353, 385, 417, 449	SINT	0: No data 1: 2 Byte 2: 4 Byte 3: 8 Byte 4: 16 Byte 5: 32 Byte	Attribute 2
Input Data Extension	226, 258, 290, 322, 354, 386, 418, 450	SINT	0: No Data 1: Extended Status 2: Events 3: Extended Status + Events	Attribute 3
Output Data Swapping Mode	227, 259, 291, 323, 355, 387, 419, 451	SINT	0: Raw IO-Link Data116: 116 WORD 1724: 18 DWORD	Attribute 4
Output Data Swapping Offset	228, 260, 292, 324, 356, 388, 420, 452	SINT	030 Byte (0)	Attribute 5
Input Data Swapping Mode	229, 261, 293, 325, 357, 389, 421, 453	SINT	0: Raw IO-Link Data 116: 116 WORD 1724: 18 DWORD	Attribute 6
Input Data Swapping Offset	230, 262, 294, 326, 358, 390, 422, 454	SINT	030 Byte (0)	Attribute 7

Configuration parameter	Byte offset config. assembly	Data type	Valid values	CIP object class 0xA3, Instance 18
IOL Failsafe	231, 263, 295, 327, 359, 391, 423, 455	SINT	0: Set Low 1: Set High 2: Hold Last 3: Replacement Value (transferred via IO-Link Failsafe Parameter Object) 4: IO-Link Master Command	Attribute 8
Port Mode	232, 264, 296, 328, 360, 392, 424, 456	SINT	O: Deactivated 1: Manual (with validation and backup config) 2: Autostart (no validation and backup config)	Attribute 9
Validation and Backup	233, 265, 297, 329, 361, 393, 425, 457	SINT	O: No device check and clear (no data storage) 1: Type compatible V1.0 device (no data storage) 2: Type compatible V1.1 device (no data storage) 3: Type compatible V1.1 device with Backup + Restore (download + upload) 4 Type compatible V1.1 device with Restore (download master to device)	Attribute 10
Vendor ID	234, 266, 298, 330, 362, 394, 426, 458	DINT	065535 (0)	Attribute 11
Device ID	238, 270, 302, 334, 366, 398, 430, 462	DINT	016777215 (0)	Attribute 12

Configuration parameter	Byte offset config. assembly	Data type	Valid values	CIP object class 0xA3, Instance 18
Cycle Time	242, 274, 306, 338,	SINT	0: As fast as possible	Attribute 13
	370, 402, 434, 466		1: 1.6 ms	
			2: 3.2 ms	
			3: 4.8 ms	
			4: 8.0 ms	
			5: 20.8 ms	
			6: 40.0 ms	
			7: 80.0 ms	
			8: 120.0 ms	

Assignment of the IO-Link ports:

IO-Link port 1	Port X1.ChA	CIP object instance 1	
[]	[]	[]	
IO-Link port 8	Port X8.ChA	CIP object instance 8	

The number of IO-Link ports depends on the IO-Link Master variant. IO-Link Masters with less than 8 IO-Link ports only provide configuration parameters for their own count. Unused configuration data bytes are sent as "zero bytes" inside the configuration assembly.

Configuration parameters of an IO-Link port are only taken into account by the application when the corresponding Channel Mode of the Channel Settings is set to **IO-Link**.

9.4.1 Output Data Size

The **Output Data Size** of the respective IO-Link device can be configured by this parameter. There can be up to 32 Bytes of IO-Link output data per port.

The **Output Data Size** of every IO-Link device has influence on the total **Output Data Size** of the connection. It has to be taken into account that all IO-Link output data fits into the total size.

This parameter is only settable when no connection is active.

9.4.2 Input Data Size

The **Input Data Size** of the respective IO-Link device can be configured by this parameter. There can be up to 32 Bytes of IO-Link input data.

The **Input Data Size** of every IO-Link device has influence on the total **Input Data Size** of the connection. It has to be taken into account that all IO-Link input data fits into the total size.

This parameter is only settable when no connection is active.

9.4.3 Input Data Extension

The **Input Data Extension** can be selected to extend each IO-Link input data with extended status information and/or IO-Link events.

The **Input Data Extension** of every IO-Link device has influence on the total input data size of the connection. It has to be taken into account that all IO-Link output data including the extension fits into the total size.

This parameter is only settable when no connection is active.

9.4.4 Output Data Swapping Mode

The byte order of IO-Link is big endian which is not compatible to EtherNet/ IP's little endian format. For setting output data in the correct format, the parameters **Output Data Swapping Mode** and **Output Data Swapping Offset** support the user. There can be selected up to 16 words or up to 8 double words for converting the output data.

Raw IO-Link Data:

No byte swap

Data type WORD:

Data byte order: Byte 0, Byte 1

Order after Swap: Byte 1, Byte 0

Data type DWORD:

Data byte order: Byte 0, Byte 1, Byte 2, Byte 3

Order after Swap: Byte 3, Byte 2, Byte 1, Byte 0

9.4.5 Output Data Swapping Offset

The **Output Data Swapping Offset** describes the start point in the process data for using the configured **Output Data Swapping Mode**. Both parameters are dependent on the configured output data size.

9.4.6 Input Data Swapping Mode

The byte order of IO-Link is big endian which is not compatible to EtherNet/IP's little endian format. For receiving input data in the correct format, the parameters **Input Data Swapping Mode** and **Input Data Swapping Offset** support the user. There can be selected up to 16 words or up to 8 double words for converting the input data.

Raw IO-Link Data:

No byte swap

Data type WORD:

Data byte order: Byte 0, Byte 1
Order after Swap: Byte 1, Byte 0

Data type DWORD:

Data byte order: Byte 0, Byte 1, Byte 2, Byte 3 Order after Swap: Byte 3, Byte 2, Byte 1, Byte 0

9.4.7 Input Data Swapping Offset

The **Input Data Swapping Offset** describes the start point in the process data for using the configured **Input Data Swapping Mode**. Both parameters are dependent on the configured input data size and the optional input data extension.

9.4.8 IOL Failsafe

The LioN-X devices support a failsafe function for the output data of the IO-Link channels. In case of an internal device error, the PLC is in STOP state and cannot provide valid process data, the connection is interrupted or the communication is lost: The output data of the IO-Link channels is controlled by the configured failsafe values.

Set Low:

If failsafe is active, all bits of the IO-Link output data are set to low (0).

Set High:

If failsafe is active, all bits of the IO-Link output data are set to high (1).

Hold Last:

If failsafe is active, all bits of the IO-Link output data arel hold the last valid process data state (0 or 1).

Replacement Value:

A **Replacement Value** can be set via the **IO-Link Failsafe** parameter object for every IO-Link device. If failsafe is active, these **Replacement Values** are transmitted to the IO-Link device. The current configured IO-Link output data size must be considered. Take into account that in the case of an error the **Replacement Values** are sent instead of the output process data so that a configured **Swapping Mode** has influence on the byte order.

IO-Link Master Command:

If failsafe is active, an IO-Link-specific mechanism for valid/invalid output process data is used and the IO-Link device determines the behavior itself.

9.4.9 Port Mode

The **Port Mode** describes how the IO-Link master handles the presence of an IO-Link device at the port.

Deactivated:

The IO-Link port is deactivated but can be configured for later use. No diagnostics are generated if the IO-Link device is not connected.

IO-Link Autostart:

The IO-Link port is activated and no explicit port configuration is needed. Configurations such as **Validation and Backup** (Inspection Level), **Vendor ID**, **Device ID** and **Cycle Time** are not required.

IO-Link Manual:

The IO-Link port is activated and explicit port configuration can be done for the parameters **Validation and Backup** (Inspection Level), **Vendor ID**, **Device ID** and **Cycle Time**.

9.4.10 Validation and Backup

With this parameter, the user can set the behavior of the IO-Link ports regarding the type compatibility and data storage mechanism of the connected IO-Link Device.

The precondition for using **Validation and Backup** is that you configure the **Port Mode** to "IO-Link Manual".

Definition of Backup (Device to Master)

A Backup (upload from IO-Link Device to Master) is performed when an IO-Link Device is connected and the master does not have any valid parameter data. The read parameter data are permanently stored on the master.

If parameter data is changed on the Device during runtime, the stored device parameters on the Master can be updated using the ParamDownloadStore (index 0x0002, subindex 0x00, value 0x05) command. This command sets the DS_UPLOAD_REQ flag on the device and thus the IO-Link Master executes an upload procedure from the IO-Link Device.

With an enabled Backup function, the IO-Link Master can be replaced.

Definition of Restore (Master to Device)

A Restore (download from IO-Link Master to Device) is performed when an IO-Link Device is connected and the master has valid parameter data stored which are usable for the device and not equal compared to the device parameters. This procedure can be blocked by the IO-Link Device via Parameter Storage Locked.

With an enabled Restore function, the IO-Link Device can be replaced.

No device check and clear (no data storage):

No check of connected **Vendor ID** or **Device ID** and no **Backup and Restore** support of the IO-Link Master parameter server.

Type compatible V1.0 device (no data storage):

Type compatible according IO-Link specification V1.0 which includes validation of **Vendor ID** and **Device ID**. The IO-Link specification V1.0 does not support IO-Link Master parameter server.

Type compatible V1.1 device (no data storage):

Type compatible according IO-Link specification V1.1 which includes validation of **Vendor ID** and **Device ID**. **Backup and Restore** is disabled.

Type compatible V1.1 device with Backup + Restore (download + upload):

Type compatible according IO-Link specification V1.1 which includes validation of **Vendor ID** and **Device ID**. Backup and Restore is enabled.

Type compatible V1.1 device with Restore (download Master to Device):

Type compatible according IO-Link specification V1.1 which includes validation of **Vendor ID** and **Device ID**. Only Restore is enabled.

9.4.11 Vendor ID

The **Vendor ID** is needed for the validation of the IO-Link device and can be configured with this parameter.

Precondition for using the **Vendor ID** is that you configure **Port Mode** to "IO-Link Manual". **Validation and Backup** must be set to a type compatible V1.X device.

9.4.12 Device ID

The **Device ID** is needed for the validation of the IO-Link device and can be configured with this parameter.

Precondition for using the **Device ID** is that you configure **Port Mode** to "IO-Link Manual". **Validation and Backup** must be set to a type compatible V1.X device.

9.4.13 Cycle Time

The IO-Link cycle time can be configured by this parameter.

The precondition for using **Cycle Time** is that you configure **Port Mode** to "IO-Link Manual".

As fast as possible:

The IO-Link port uses the max. supported IO-Link device and master update cycle time for the cyclic I/O data update between IO-Link Master and IO-Link Device.

1.6 ms, 3.2 ms, 4.8 ms, 8.0 ms, 20.8 ms, 40.0 ms, 80.0 ms, 120.0 ms:

The cycle time can be set manually to the provided options. This option can be used e.g. for IO-Link devices which are connected over inductive couplers. Inductive couplers are normally the bottleneck in the update cycle time between IO-Link Master and IO-Link Device. In this case, please refer to the data sheet of the inductive coupler.

10 Process data assignment

The LioN-X devices in general support process data communication in both directions. The consuming data in this context is defined as the process output data which controls physical outputs and IO-Link output data. The producing data in this context is defined as the process input data which contains the physical inputs, diagnostics and IO-Link input data with optional extended status and event data.

The following chapters describe the data images for the consuming and producing data direction which are assigned to the output and input assemblies.

10.1 Consuming data image (output)

Output data frame	Digital output channel control	Reserved (e.g. feature control)	IO-Link output data
Consuming data size	2 Byte, INT	2 Byte, INT	0256 Byte, INT

The complete *Output data frame* has a variable size of 4..260 Bytes. In general, a 4 Byte Run/Idle Header precedes, resulting in 8..264 Bytes in total.

The following chapters describe the bit assignment.

10.1.1 Digital output channel control

Digital output channel control	Bit	7	6	5	4	3	2	1	0
Channel	Byte 0	8	7	6	5	4	3	2	1
number (default mapping)	Byte 1	16	15	14	13	12	11	10	9

The control values are effective if the respective channels are configured as outputs and the *Digital Output Control* is set to *DO Channel Control*.

10.1.2	IO-LIN	ik outp	out dat	а	
IO-Link	IO-Link	IO-Link	IO-Link	IO-Link	IO-I

IO-Link output data	IO-Link port 1 control	IO-Link port 2 control	IO-Link port 3 control	IO-Link port 4 control	IO-Link port 5 control	IO-Link port 6 control	IO-Link port 7 control	IO-Link port 8 control
IO-Link	0 Byte							
port	2 Byte							
output size	4 Byte							
	8 Byte							
	16 Byte							
	32 Byte							

The IO-Link port output size depends on the configuration of the IO-Link port. Every IO-Link port can be set to its required size. The control data is transferred to the device. However, the content depends on the IO-Link Output Data Swapping Mode and Output Data Swapping Offset.

If there is no IO-Link port configured, the *Consuming data image* has no IO-Link output data.

10.2 Producing data image (input)

Input data frame	Digital input channel status	General diagnostics	Sensor diagnostics	Actuator/ U _{Aux} diagnostics	IO-Link diagnostics	IO-Link input data
Producing data size	2 Byte, INT	2 Byte, INT	2 Byte, INT	2 Byte, INT	0 Byte 6 Byte, INT	0432 Byte, INT

The complete *Input data frame* has a variable size of 8..446 Bytes.

The following chapters describe the bit assignment.

10.2.1 Digital input channel status

Digital input channel status	Bit	7	6	5	4	3	2	1	0
Channel number (default	Byte 0	8	7	6	5	4	3	2	1
mapping)	Byte 1	16	15	14	13	12	11	10	9

Each status value is effective if the channel is configured as Input.

10.2.2 General diagnostics

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	DTO	DTU	SCA	scs	LVA	LVS
	Byte 1	0	0	0	0	IDN	IDW	IDE	IVE

Low Voltage System/Sensor Supply

LVA Low Voltage Actuator Supply

SCS Short Circuit Sensor

SCA Short Circuit Actuator/U_L/U_{Aux}

DTU Device Temperature Underrun

DTO Device Temperature Overrun

FME Force Mode Enabled

IME Internal Module Error

IVE IO-Link Validation Error (collective

error)

IDE IO-Link Device Error (collective error)

IDW IO-Link Device Warning (collective

error)

IDN IO-Link Device Notification

(collective error)

0 Reserved

10.2.3 Sensor diagnostics

Sensor diagnostics	Bit	7	6	5	4	3	2	1	0
Port number	Bvte 0	X8	X7	X6	X5	X4	Х3	X2	X1
	Byte 1	0	0	0	0	0	0	0	0

X1..8 Sensor Short Circuit on Port X1..X8

0 Reserved

10.2.4 Actuator/U_L/U_{Aux} diagnostics

Actuator/U _{Aux} diagnostics	Bit	7	6	5	4	3	2	1	0
Channel number (fix)	Byte 0	8	7	6	5	4	3	2	1
	Byte 1	16	15	14	13	12	11	10	9

 $\textbf{1..16} \hspace{35pt} \textbf{Actuator}/\textbf{U}_{\textbf{L}}/\textbf{U}_{\textbf{Aux}} \hspace{3pt} \textbf{channel} \hspace{3pt} \textbf{error} \hspace{3pt} \textbf{on}$

channel 1..16

10.2.5 IO-Link diagnostics

IO-Link diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	ICE8	ICE7	ICE6	ICE5	ICE4	ICE3	ICE2	ICE1
	Byte 1	0	0	0	0	0	0	0	0
	Byte 2	IVE8	IVE7	IVE6	IVE5	IVE4	IVE3	IVE2	IVE1
	Byte 3	IDE8	IDE7	IDE6	IDE5	IDE4	IDE3	IDE2	IDE1
	Byte 4	IDW8	IDW7	IDW6	IDW5	IDW4	IDW3	IDW2	IDW1
	Byte 5	IDN8	IDN7	IDN6	IDN5	IDN4	IDN3	IDN2	IDN1

ICE1..8 IO-Link Port COM Error (device

missing, broken wire, short circuit)

IVE1..8 IO-Link Port Validation Error

IDE1..8 IO-Link Port Device Error

IDW1..8 IO-Link Port Device Warning

IDN1..8 IO-Link Port Device Notification

0 Reserved

If there is no IO-Link port configured, the input data image doesn't show IO-Link diagnostics.

10.2.6 IO-Link input data

IO-Link						IO-Link port 8				
input data	Status	PQI	Extended status			Status	Status PQI		Events	
IO-Link	0 Byte	0 Byte	0 Byte	0 Byte	[]	0 Byte	0 Byte	0 Byte	0 Byte	
port	2 Byte	2 Byte	8 Byte	12 Byte		2 Byte	2 Byte	8 Byte	12 Byte	
input size	4 Byte					4 Byte				
	8 Byte					8 Byte				
	16 Byte					16 Byte				
	32 Byte					32 Byte				

The IO-Link port input size depends on the configuration of the IO-Link port. Every IO-Link port can be set to its required size. The device input data is mapped to the **Status** field and the content depends on the IO-Link *Input Data Swapping Mode* and *Input Data Swapping Offset*.

The PQI provides some IO-Link information. The Extended Status and Events can be enabled by the IO-Link port configuration. If there is no IO-Link port configured, the producing data image has no IO-Link input data.

Port Qualifier Information (PQI):

PQI (Port Qualifier Information)	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	PQ	DevErr	DevCom	PortActiv	eSubstDe	√NewPar	0	0
	Byte 1	0	0	0	0	0	0	0	0

NewPar	Update of Device parameter detected
SubstDev	Substitute device detected (different SerialNumber)
PortActive	Port activated

DevCom Device detected and is in

PREOPERATE or OPERATE state

DevErr Error/warning assigned to Device or

Port occurred

PQ Valid IO Process Data from Device

0 Reserved

Extended status:

IO-Link Extended status	Bit	7	6	5	4	3	2	1	0		
Extended	Byte 0	0	0	0	ICT	BUI	SPE	ILE	OLE		
ulagriostics	diagnostics Byte 1 0										
Vendor ID	Byte 2		Vendor ID (LSB)								
	Byte 3	Vendor ID (MSB)									
Device ID	Byte 4				Device I	ID (LSB)					
	Byte 5	Device ID									
Byte 6 Device ID (MSB)											
	Byte 7	0									

OLE Output process data length error

(device mismatch)

ILE Input process data length error

(device mismatch)

SPE Startup parameterization error (direct

parameter error)

Bul Backup inconsistency (parameter

storage error)

ICT Invalid Cycle Time

0 Reserved

Events:

IO-Link events	Bit	7	6	5	4	3	2	1	0
Event Qualifier 1	Byte 0	Mode		Туре		0	0	Insta	ance
	Byte 1	0	0	0	0	0	0	0	0
Event Code 1	Byte 2		Event Code						
	Byte 3								
Event Qualifier 2	Byte 4	Мо	Mode Ty		ре	0	0	Insta	ance
	Byte 5	0	0	0	0	0	0	0	0
Event Code 2	Byte 6				Event	Code			
	Byte 7								
Event Qualifier 3	Byte 8	Мо	ode	Туре		0	0	Insta	ance
	Byte 9	0	0	0	0	0	0	0	0
Event Code 3	Byte 10	Event Code							
	Byte 11								

Instance Unknown (0), Reserved (Physical

Layer PL (1), Data Link Layer DL (2), Application Layer AL (3)),

Application (4)

Type Notification (1), Warning (2), Error (3)

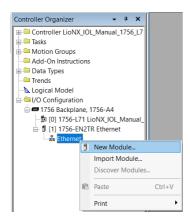
Mode Event single shot (1), Event

disappears (2), Event appears (3)

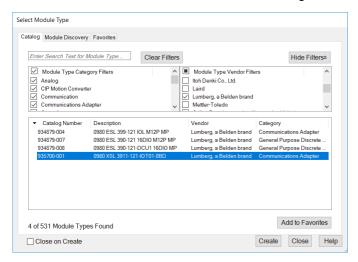
Event Code Diagnostic code reported by the IO-

Link device

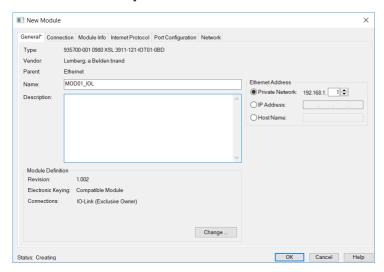
0

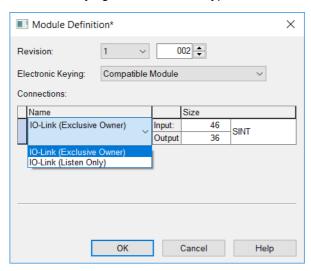

Reserved

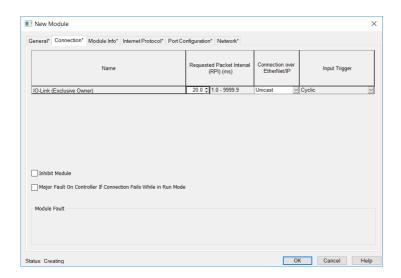
11 Configuration and operation with Rockwell Automation Studio 5000®

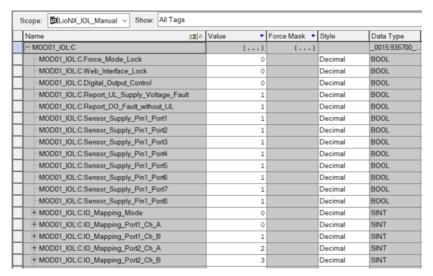

The configuration and start-up of the LioN-X devices described on the following pages refers to Rockwell Automation Studio 5000[®], V30. If you are using an engineering tool from another provider, please consider the related documentation.

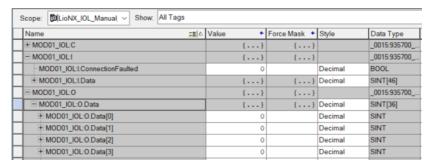
Perform the following working steps:


- 1. Create a new project in Studio 5000[®].
- 2. Select the correct controller.
- **3.** When no integrated EtherNet/IP interface is available, add the proper communication interface to your backplane under **Controller Organizer** > **I**/ **O-Configuration**.
- **4.** Set a communication path to enable the project download.
- **5.** Install the EDS files of the LioN-X devices in Studio 5000[®] with the EDS hardware installation tool.
- **6.** Go to **Controller Organizer** > **I/O-Configuration** and right-click the Ethernet interface.


7. Select New Module in the menu. The following selection window opens:


- **8.** Use the **Module Type Vendor Filter** on the right side to display all installed devices of Lumberg Automation[™].
- 9. Select the device you wish to add and click on Create.


- **10.** Enter a name for the device and set the chosen IP address. In this example, the name is **MOD01_IOL** and the IP address is **192.168.1.1**.
- **11.** Click on **Change** in order to change the settings for the device revision, electronic keying and connection type.


- **12.** Select the connection type and configure the total sizes of the input and output process data. The sizes depend on the number of connected IO-Link devices and their data lengths of both directions. Each device input and output data size must also be set later in the IO-Link port configuration. The selection of the data type refers to the type in which Studio 5000® maps the input and output data. The default data type is SINT. The INT type is selectable when each size is a multiple of 2. The DINT type is selectable when each size is a multiple of 4. Click on **OK**.
- **13.** In the **Connection** folder of the **Module Properties**, you see the selected connection. This folder also lets you define the **Requested Packet Interval (RPI)** and the EtherNet/IP connection type. A value of 1 ms is the minimum for parameter RPI and the connection types *Unicast* or *Multicast* can be chosen. Apply the settings.

14. Move to **Controller-Tags** in **Controller Organizer**. The controller tags for the configuration parameters contain the name of the device, followed by a ":C". The configuration parameters can be set under **Value** and are described in chapter Configuration parameters on page 48.

15. The tag of the input process data contain the name of the device, followed by a ":I.Data". The output process data has the same name followed by a ":O.Data". Both arrays show its configured data sizes. The content of them is described in chapter Process data assignment on page 70.

16. When the configuration is completed, the parameters can be downloaded to the EtherNet/IP controller.

12 CIP object classes

12.1 EtherNet/IP object classes

According to the CIP specification, the LioN-X variants support the following standard EtherNet/IP object classes:

Object Class	Instances
Identity Object (0x01)	0, 1
Message Router Object (0x02)	0 (only on class level)
Assembly Object (0x04)	0, 130, 131, 145
Connection Manager Object (0x06)	0 (only on class level)
Discrete Input Point Object (0x08)	0, 116
Discrete Output Point Object (0x09)	0, 116
DLR Object (0x47)	0, 1
QoS Object (0x48)	0, 1
TCP/IP Object (0xF5)	0, 1
Ethernet Link Object (0xF6)	0, 12

All objects with instance attributes are described in the following chapters.

12.1.1 Identity Object (0x01)

Supported services:

Get Attributes All (0x01)

Reset (0x05): 0 = Reset Module (Warmstart), 1 = Reset to Factory Default Get Attribute Single (0x0E)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last class attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Attribute	Name	Access	Data Type	Description
1	Vendor ID	Get	UINT	Vendor Identification
2	Device Type	Get	UINT	Indication of general type of product
3	Product Code	Get	UINT	Identification of a particular product of an individual vendor
4	Revision	Get	USINT, USINT	Structure with major and minor revision
5	Status	Get	WORD	Summary status of device: b0: Owned b1: Reserved (0) b2: Configured b3: Reserved (0) b47: Extended Device Status 0 = Self-Testing or Unknown 1 = Firmware Update in Progress 2 = At least one faulted I/O connection 3 = No I/O connections established 4 = Non-Volatile Configuration bad 5 = Major Fault 6 = At least one I/O connection in RUN mode 7 = At least one I/O connection established, all in IDLE mode 8 = Unused (valid only for instances grater than 1) 9 = Reserved 1015 = Vendor specific b8: Minor Recoverable Fault b9: Minor Unrecoverable Fault b10: Major Recoverable Fault b11: Major Unrecoverable Fault b1215: Reserved (0)
6	Serial Number	Get	UDINT	Serial number of device
7	Product Name	Get	STRING	Human readable identification

Attribute	Name	Access	Data Type	Description
8	State	Get	USINT	Present state of the device: 0 = Nonexistent 1 = Device Self Testing 2 = Standby 3 = Operational 4 = Major Recoverable Fault 5 = Major Unrecoverable Fault 6254 = Reserved 255 = Default Value
9	Configuration Consistency Value	Get	UINT	Can be a CRC, incrementing count or any other mechanism (vendor specific behavior) to reflect a non-volatile configuration change
19	Protection Mode	Get	WORD	Current protection mode of the device: b0: Implicit Protection enabled b12: Reserved b3: Explicit Protection enabled b415: Reserved

12.1.2 Assembly Object (0x04)

Supported services:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class attribute (Instance 0)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
3	Number of Instances	Get	UINT	Number of Instances currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last <u>class</u> attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Instance attribute (Instance <AssemblyID>)

Attribute	Name	Access	Data Type	Description
3	Data	Get, Set	ARRAY	Assembly Data (Set service only available for consuming assemblies that are not part of an active implicit connection)
4	Size	Get	UINT	Number of bytes in Attribute 3

12.1.3 Discrete Input Point Object (0x08)

Supported services:

Get Attribute Single (0x0E)

Class attribute (Instance 0)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object

Attribute	Name	Access	Data type	Description
3	Value	Get	BOOL	Input Point Value (0 = OFF, 1 = ON)
4	Status	Get	BOOL	Input Point Status (0 = OK, 1 = Alarm)

12.1.4 Discrete Output Point Object (0x09)

Supported services:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class attribute (Instance 0)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object

Attribute	Name	Access	Data type	Description
3	Value	Get Set	BOOL	Output Point Value (0 = OFF, 1 = ON)
4	Status	Get	BOOL	Output Point Status (0 = OK, 1 = Alarm)

12.1.5 DLR Object (0x47)

Supported services:

Get Attributes All (0x01)

Get Attribute Single (0x0E)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last class attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Attribute	Name	Access	Data type	Description
1	Network Topology	Get	BOOL	0 = Linear 1 = Ring
2	Network Status	Get	BOOL	0 = Normal operation 1 = Ring Fault 2 = Unexpected Loop Detected 3 = Partial Network Fault 4 = Rapid Fault/Restore Cycle
10	Active Supervisor Address	Get	ARRAY	Supervisor IP Address, Supervisor MAC Address (0 = not configured)
12	Capability Flags	Get	DWORD	Flag description: b0: Announce-based Ring Node (0) b1: Beacon-based Ring Node (1) b24: Reserved (0) b5: Supervisor Capable (0) b6: Redundant Gateway Capable (0) b7: Flush_Table frame Capable (1) b815: Reserved (0)

12.1.6 QoS Object (0x48)

Supported services:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last class attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Attribute	Name	Access	Data type	Description
1	802.1Q Tag Enable	Get, Set	USINT	Enables (1) or disables (0) sending 802.1Q frames on CIP and IEEE 1588 messages (default value 0)
2	DSCP PTP Event	Get, Set	USINT	DSCP value for PTP Event frames (default value 59)
3	DSCP PTP General	Get, Set	USINT	DSCP value for PTP General frames (default value 47)
4	DSCP Urgent	Get, Set	USINT	CIP transport class 0/1 messages with Urgent priority (default value 55)
5	DSCP Scheduled	Get, Set	USINT	CIP transport class 0/1 messages with Scheduled priority (default value 47)
6	DSCP High	Get, Set	USINT	CIP transport class 0/1 messages with High priority (default value 43)
7	DSCP Low	Get, Set	USINT	CIP transport class 0/1 messages with Low priority (default value 31)
8	DSCP Explicit	Get, Set	USINT	CIP UCMM, CIP transport class 2/3, All other EtherNet/IP encapsulation messages (default value 27)

12.1.7 TCP/IP Object (0xF5)

Supported services:

Get Attributes All (0x01)

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class attribute (Instance 0)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Attribute	Name	Access	Data type	Description
1	Status	Get	DWORD	Interface Status description:
				b03: Interface Configuration Status
				0 = Not configured
				1 = Configuration obtained by BOOTP, DHCP or stored value
				2 = Configuration obtained by hardware settings (e.g. rotary switches)
				315 = Reserved
				b4: Mcast Pending
				b5: Interface Configuration Pending
				b6: Acd Status
				b7: Acd Fault
				b831: Reserved (0)

Attribute	Name	Access	Data type	Description
2	Configuration Capability	Get	DWORD	Interface Capability Flags: b0: BOOTP Client (1) b1: DNS Client (0) b2: DHCP Client (1) b3: DHCP-DNS Update (0) b4: Configuration Settable (1) b5: Hardware Configurable (0 = no rotary switches; 1 = rotary switches available) b6: Interface Configuration Change Requires Reset (0) b7: Acd Capable (1) b831: Reserved (0)
3	Configuration Control	Get, Set	DWORD	Interface Control Flags: b03: Configuration Method: 0 = Stored Value 1 = BOOTP 2 = DHCP 315 = Reserved b4: DNS Enable (0) b531: Reserved (0)
4	Physical Link Object	Get	STRUCT	Path to physical link object
5	Interface Configuration	Get, Set	STRUCT	TCP/IP network interface configuration
6	Host Name	Get, Set	STRING	Host name of the device (length of 0 = not configured)
10	Select Acd	Get, Set	BOOL	Enables (1) or disables (0) the use of ACD (default value 1)
11	Last Conflict Detected	Get, Set	STRUCT	Structure containing information related to the last conflict detected
13	Encapsulation Inactivity Timeout	n Get, Set	UINT	Number of seconds of inactivity before TCP connection is closed: 0 = disable 13600 = timeout in seconds 120 = default value

12.1.8 Ethernet Link Object (0xF6)

Supported services:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Get and Clear (0x4C)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.
3	Number of Instances	Get	UINT	Number of object instances currently created at this class level of the device (in this case number of ethernet ports)

Attribute	Name	Access	Data type	Description
1	Interface Speed	Get	UDINT	Current Interface speed in Mbps
2	Interface Flags	Get	DWORD	Interface Flags: b0: Link Status b1: Half (0) or Full (1) Duplex b24: Negotiation Status: 0 = Auto-negotiation in progress 1 = Auto-negotiation and speed detection failed (using default 10Mbps and half duplex) 2 = Auto negotiation failed but detected speed (using default half duplex) 3 = Successfully negotiated speed and duplex 4 = Auto-negotiation not attempted (forced speed and duplex) b5: Manual Setting Requires Reset b6: Local Hardware Fault b731: Reserved (0)
3	Physical Address	Get	ARRAY	MAC address
4	Interface Counters	Get	STRUCT	Interface Counters
5	Media Counters	Get	STRUCT	Media-specific counters
6	Interface Control	Get, Set	STRUCT	Configuration for physical interface Control Bits (WORD): b0: Auto-negotiate b1: Forced Duplex Mode (0 = Half Duplex; 1 = Full Duplex, only valid when Auto-negotiate = 0) b215: Reserved (0) Forced Interface Speed in Mbps (UINT)

Attribute	Name	Access	Data type	Description
7	Interface Type	Get	USINT	Type of interface: 0 = Unknown interface type 1 = Internal interface 2 = Twisted-pair 3 = Optical fiber 4255 = Reserved
8	Interface State	Get	USINT	State of interface: 0 = Unknown 1 = Enabled and ready to send and receive data 2 = Disabled 3 = Testing 4255 = Reserved
9	Admin State	Get, Set	USINT	Administrative state: 0 = Reserved 1 = Enable interface 2 = Disable interface 3255 = Reserved
10	Interface Label	Get	STRING	Human readable identification (size max. 64)
11	Interface Capability	Get	STRUCT	Interface Capability Flags (DWORD): b0: Manual Setting Requires Reset (0) b1: Auto-negotiate (1) b2: Auto-MDIX (1) b3: Manual Speed/Duplex (1) b431: Reserved (0) Speed/Duplex Array Count of following struct (USINT, 4) Interface Speed in Mbps (UINT, 10/100) Interface Duplex Mode (USINT, 0/1): 0 = Half Duplex 1 = Full Duplex 2255 = Reserved

12.2 Vendor specific object classes

The LioN-X and LioN-Xlight EtherNet/IP variants support the following vendor specific object classes:

Object Class	Instances
General Settings Object (0xA0)	0, 1
Channel Settings Object (0xA1)	0, 116
IO-Link Diagnosis Settings Object (0xA2)	0, 1
IO-Link Port Settings Object (0xA3)	0, 18
IO-Link Failsafe Parameter Object (0xA4)	0, 18
IO-Link Device Parameter Object (0xA5)	0, 18

12.2.1 General Settings Object (0xA0)

Supported services:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Attribute	Name	Access	Data type	Description
2	Force Mode Lock	Get, Set	BOOL	0: Disable
				1: Enable
3	Web Interface	Get, Set	BOOL	0: Disable
	Lock			1: Enable
4	Digital Output	Get, Set	BOOL	0: DO Channel Control
	Control			1: IO-Link Control
5	Report UL/UAux	Get, Set	BOOL	0: Disable
	Supply Voltage Fault			1: Enable
6	Report DO Fault	Get, Set	BOOL	0: Disable
	without UL/UAux			1: Enable
724	Reserved			
25	CIP object	Get, Set	BOOL	0: Disable
	configuration lock			1: Enable
26	External	Get, Set	BOOL	0: Disable
	configuration lock			1: Enable
2731	Reserved			
32	IO Mapping Mode	Get, Set	SINT	0: Default Assignment
				1: Byte Swap
				2: LSB Ch.A - MSB Ch.B
				3: LSB Ch.B - MSB Ch.A
				4: Free IO Mapping

12.2.2 Channel Settings Object (0xA1)

Supported services:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Attribute	Name	Access	Data type	Description
1	IO Mapping	Get, Set	SINT	015: Bit number of 16 channel process data 16: Inactive
2	DO Surveillance Timeout	Get, Set	INT	0255
3	DO Failsafe	Get, Set	SINT	0: Set Low 1: Set High 2: Hold Last
4	DO Restart Mode	Get, Set	SINT	0: Disable 1: Enable
5	DI Logic	Get, Set	SINT	0: Normally Open 1: Normally Close
6	DI Filter	Get, Set	SINT	0: Disabled 1: 1 ms 2: 2 ms 3: 3 ms 4: 6 ms 5: 10 ms 6: 15 ms
79	Reserved			
10	Channel Mode	Get, Set	SINT	0: Inactive 1: Digital Output 2: DigitalInput 3: IO-Link (if available)

12.2.3 IO-Link Diagnosis Settings Object (0xA2)

Supported services:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class attribute (Instance 0)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Attribute	Name	Access	Data type	Description
1	IO-Link Master Diagnosis	Get, Set	BOOL	0: Disable 1: Enable
2	IO-Link Device Error	Get, Set	BOOL	0: Disable 1: Enable
3	IO-Link Device Warning	Get, Set	BOOL	0: Disable 1: Enable
4	IO-Link Device Notification	Get, Set	BOOL	0: Disable 1: Enable
512	IO-Link Device Diagnosis Port 18	Get, Set	BOOL	0: Disable 1: Enable

12.2.4 IO-Link Port Settings Object (0xA3)

Supported services:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class attribute (Instance 0)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Attribute	Name	Access	Data type	Description
1	Output Data Size	Get, Set	SINT	0: No data
				1: 2 Byte
				2: 4 Byte
				3: 8 Byte
				4: 16 Byte
				5: 32 Byte
				Only settable when no connection is established.
2	Input Data Size	Get, Set	SINT	0: No data
				1: 2 Byte
				2: 4 Byte
				3: 8 Byte
				4: 16 Byte
				5: 32 Byte
				Only settable when no connection is established.

Attribute	Name	Access	Data type	Description
3	Input Data Extension	Get, Set	SINT	0: No Data 1: Extended Status 2: Events 3: Extended Status + Events Only settable when no connection is established.
4	Output Data Swapping Mode	Get, Set	SINT	0: Raw IO-Link Data 116: 116 WORD 1724: 18 DWORD Only settable when no connection is established.
5	Output Data Swapping Offset	Get, Set	SINT	030 Byte Only settable when no connection is established.
6	Input Data Swapping Mode	Get, Set	SINT	0: Raw IO-Link Data 116: 116 WORD 1724: 18 DWORD Only settable when no connection is established.
7	Input Data Swapping Offset	Get, Set	SINT	030 Byte Only settable when no connection is established.
8	IOL Failsafe	Get, Set	SINT	0: Set Low 1: Set High 2: Hold Last 3: Replacement Value (transferred via IO-Link Failsafe Parameter Object) 4: IO-Link Master Command
9	Port Mode	Get, Set	SINT	0: Deactivated 1: Manual (with validation and backup config) 2: Autostart (no validation and backup config)

Attribute	Name	Access	Data type	Description
10	Validation and Backup	Get, Set	SINT	0: No device check and clear (no data storage)
				1: Type compatible V1.0 device (no data storage)
				2: Type compatible V1.1 device (no data storage)
				3: Type compatible V1.1 device with Backup + Restore (Download + Upload)
				4 Type compatible V1.1 device with Restore (Download Master to Device)
11	Vendor ID	Get, Set	DINT	065535
12	Device ID	Get, Set	DINT	016777215
13	Cycle Time	Get, Set	SINT	0: As fast as possible
				1: 1.6 ms
				2: 3.2 ms
				3: 4.8 ms
				4: 8.0 ms
				5: 20.8 ms
				6: 40.0 ms
				7: 80.0 ms
				8: 120.0 ms

12.2.5 IO-Link Failsafe Parameter Object (0xA4)

Supported services:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class attribute (Instance 0)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Attribute	Name	Access	Data type	Description
1	Failsafe value of IO-Link port	Get, Set	Array of Bytes	Depends on configured process data lengths, content must consider possible swapping configuration (failsafe value format must match output data format)

12.2.6 IO-Link Device Parameter Object (0xA5)

Supported services:

Read ISDU data (0x4B)

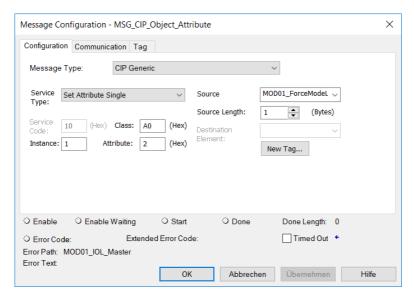
Write ISDU data (0x4C)

Class attribute (Instance 0)

Attribute	Name	Access	Data type	Description
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Instance attribute (Instance 1..8)

Attribute	Name	Access	Data type	Description
1	ISDU data of IO- Link port	Get, Set	Array of Bytes	Source: Index (UINT) + Subindex (USINT)
				Destination: Data/Error (max. 232 Byte)


If the read or write request is not successful (CIP response status is unequal 0), the following response format of 4 bytes is available:

Name	Data type	Error code description	Error code
IO-Link Master Error	UINT	Service not available	1
		Port blocked	2
		Timeout	3
		Invalid index	4
		Invalid sub-index	5
		Wrong port	6
		Wrong port function	7
		Invalid length	8
		ISDU not supported	9
IO-Link Device Error	USINT	Refer to IO-Link specification	-
IO-Link Device Additional Error	USINT	Refer to IO-Link specification	-

12.3 Message configuration in Rockwell Automation Studio 5000®

Attributes of CIP object classes can be handled in Rockwell Automation Studio 5000® by the *Message instruction*. This requires the selection of the proper message and service type with its respective service code. The attributes can be defined as *Get* or *Set* in the CIP object class ID, the instance ID and attribute ID. The respective data is described in the previous chapters.

The following image shows an example of how to set *Force Mode Lock* (Attribute 2) of the **General Settings Object (0xA0)** with the *Message instruction*:

For non-standard services as the *Read ISDU* service of the **IO-Link Device Parameter Object**, the service type has to be set to "Custom" and the service code must be entered manually.

The channels as in the **Channel Settings Object** are each assigned in ascending order to an instance ID.

Assignment of the channels:

Channel 1	Port X1.ChA	CIP object instance 1		
Channel 2	Port X1.ChB	CIP object instance 2		
[]	[]	[]		
Channel 15	Port X8.ChA	CIP object instance 15		
Channel 16	Port X8.ChB	CIP object instance 16		

The IO-Link ports as in the IO-Link Port Settings Object, IO-Link Failsafe Parameter Object and IO-Link Device Parameter Object are each assigned in ascending order to an instance ID.

Assignment of the IO-Link ports:

IO-Link port 1	Port X1.ChA	CIP object instance 1		
[]	[]	[]		
IO-Link port 8	Port X8.ChA	CIP object instance 8		

13 Diagnostics processing

13.1 Error of the system/sensor power supply

The voltage value for the incoming system/sensor power supply is also monitored globally. If the voltage drops below approx. 18 V, or exceeds approx. 30 V, an error diagnosis is generated.

The green U_S indicator is off.

The error diagnosis has no effect on the outputs.

Caution: It must definitely be ensured that the supply voltage, measured at the most remote participant is not below 18 V DC from the perspective of the system power supply.

The following diagnostics are generated in the producing data image:

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	DTO	DTU	SCA	scs	LVA	LVS
	Byte 1	0	0	0	0	IDN	IDW	IDE	IVE

LVS

Low Voltage System/Sensor Supply

13.2 Error of the auxiliary/actuator power supply

The voltage value for the incoming auxiliary/actuator power supply is also monitored globally. If **Report U**_L/**U**_{Aux} **Supply Voltage Fault** is enabled, an error message is generated when the voltage drops below approx. 18 V or exceeds approx. 30 V. The U_L/U_{Aux} indicator shows red.

The following diagnostics are generated in the *producing data image*:

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	DTO	DTU	SCA	scs	LVA	LVS
	Byte 1	0	0	0	IDN	IDW	IDE	IVE	0

LVA

Low Voltage Actuator Supply

If output channels are set to **High State** and **Report DO Fault without** U_L/U_{Aux} , additional error diagnostics, caused by the voltage failure, are generated on the channels

The following diagnostics are generated in the *producing data image*:

Actuator/U _{Aux} diagnostics	Bit	7	6	5	4	3	2	1	0
Channel number (fix)	Byte 0	8	7	6	5	4	3	2	1
	Byte 1	16	15	14	13	12	11	10	9

1..16

Actuator/U_L/U_{Aux} channel error on channel 1..16

If Report U_L/U_{Aux} Supply Voltage Fault is disabled, no U_L/U_{Aux} or channel diagnostics appear.

13.3 Overload/short-circuit of the IO port sensor supply outputs

In case of an overload or a short circuit between pin 1 and pin 3 on the ports (X1 - X8), the following channel-specific diagnostics in the producing data image are generated:

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	DTO	DTU	SCA	scs	LVA	LVS
	Byte 1	0	0	0	0	IDN	IDW	IDE	IVE

SCS

Short Circuit Sensor

Sensor diagnostics	Bit	7	6	5	4	3	2	1	0
Port number	Byte 0	X8	X7	X6	X5	X4	Х3	X2	X1
	Byte 1	0	0	0	0	0	0	0	0

X1..8

Sensor Short Circuit on Port X1..X8

13.4 Overload/short circuit of the digital outputs

In case of an overload or a short circuit of an output channel, the following channel-specific diagnostics are generated in the *producing data image*:

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	DTO	DTU	SCA	scs	LVA	LVS
	Byte 1	0	0	0	0	IDN	IDW	IDE	IVE

SCA

Short Circuit Actuator/U_I /U_{Aux}

Actuator/U _{Aux} diagnostics	Bit	7	6	5	4	3	2	1	0
Channel number (fix)	Byte 0	8	7	6	5	4	3	2	1
	Byte 1	16	15	14	13	12	11	10	9

1..16

Actuator/U_L/U_{Aux} channel error on channel 1..16

A channel error is determined by comparing the target value set by a controller and the physical value of an output channel.

When an output channel is activated (rising edge of the channel state), the channel errors are filtered for the period that is set by the "Surveillance-Timeout" parameter via the configuration of the device. The value of this parameter can range from 0 to 255 ms; the factory setting is 80 ms.

The filter is used to avoid premature error messages when a capacitive load is activated or an inductive load is deactivated, and during other voltage peaks when a status changes.

In static state of the output channel, that is, while the channel is permanently switched on, the filter time between error detection and the diagnosis is typically 5 ms.

13.5 IO-Link COM error

If an IO-Link Device in COM mode is unplugged, an incorrect IO-Link Device is plugged in, or an electrical fault occurs on the C/Q (Pin 4) line, for example, due to a short circuit, the following diagnostics are generated in the *producing data image*:

IO-Link diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	ICE8	ICE7	ICE6	ICE5	ICE4	ICE3	ICE2	ICE1
	Byte 1	0	0	0	0	0	0	0	0
	Byte 2	IVE8	IVE7	IVE6	IVE5	IVE4	IVE3	IVE2	IVE1
	Byte 3	IDE8	IDE7	IDE6	IDE5	IDE4	IDE3	IDE2	IDE1
	Byte 4	IDW8	IDW7	IDW6	IDW5	IDW4	IDW3	IDW2	IDW1
	Byte 5	IDN8	IDN7	IDN6	IDN5	IDN4	IDN3	IDN2	IDN1

ICE1..8

IO-Link Port COM Error (device missing, broken wire, short circuit)

13.6 IO-Link validation error

If an IO-Link Device is exchanged by a new device, the validation is configured. The vendor ID and/or device ID do not match the data of the device and the following diagnostics are generated in the *producing data image*:

IO-Link diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	ICE8	ICE7	ICE6	ICE5	ICE4	ICE3	ICE2	ICE1
	Byte 1	0	0	0	0	0	0	0	0
	Byte 2	IVE8	IVE7	IVE6	IVE5	IVE4	IVE3	IVE2	IVE1
	Byte 3	IDE8	IDE7	IDE6	IDE5	IDE4	IDE3	IDE2	IDE1
	Byte 4	IDW8	IDW7	IDW6	IDW5	IDW4	IDW3	IDW2	IDW1
	Byte 5	IDN8	IDN7	IDN6	IDN5	IDN4	IDN3	IDN2	IDN1

IVE1..8

IO-Link Port Validation Error

If extended status data is enabled by the configuration of an IO-Link port, the vendor ID and device ID are additionally transferred in the *producing data image*.

13.7 IO-Link device diagnostics

The diagnostics of an IO-Link Device come in three different levels: Error, Warning or Notification. The following diagnostics are generated in the *producing data image*:

IO-Link diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	ICE8	ICE7	ICE6	ICE5	ICE4	ICE3	ICE2	ICE1
	Byte 1	0	0	0	0	0	0	0	0
	Byte 2	IVE8	IVE7	IVE6	IVE5	IVE4	IVE3	IVE2	IVE1
	Byte 3	IDE8	IDE7	IDE6	IDE5	IDE4	IDE3	IDE2	IDE1
	Byte 4	IDW8	IDW7	IDW6	IDW5	IDW4	IDW3	IDW2	IDW1
	Byte 5	IDN8	IDN7	IDN6	IDN5	IDN4	IDN3	IDN2	IDN1

IDE1..8 IO-Link Port Device Error

IDW1..8 IO-Link Port Device Warning

IDN1..8 IO-Link Port Device Notification

If IO-Link event data is enabled by the configuration of an IO-Link port the device additionally reports event codes in the *producing data image*. Use the IO-Link Device documentation to interpret the error message.

14 IIoT functionality

The Lion-X variants offer a number of new interfaces and functions for the optimal integration into existing or future IIoT (Industrial Internet of Things) networks. The devices continue to work as field bus devices which communicate with and are controlled by a PLC (Programmable Logic Controller).

In addition, the devices offer common IIoT interfaces, which enable new communication channels besides the PLC. The communication is performed via IIoT-relevant protocols MQTT and OPC UA. With the help of these interfaces not only all information in a LioN-X device can be read. They also enable its configuration and control, if the user wishes. All interfaces can be configured extensively and offer read-only functionality.

All LioN-X variants provide user administration, which is also applicable for accessing and configuring the IIoT protocols. This allows you to manage all modification options for the device settings via personalized user authorizations.

All IIoT protocols can be used and configured independently of the field bus. It is also possible to use the devices completely without the help of a PLC and control them via IIoT protocols.

Attention: When using the IIoT functionality, a protected local network environment without direct access to the Internet is recommended.

14.1 MQTT

MQTT functions are **only** applicable for the following LioN-X variant:

▶ 0980 XSL 3912-121-007D-00F

The MQTT (Message Queuing Telemetry Transport) protocol is an open network protocol for machine-to-machine communication, which provides the transmission of telemetric data messages between devices. The integrated MQTT client allows the device to publish a specific set of information to an MQTT broker.

The publishing of messages can either occur periodically or be triggered manually.

14.1.1 MQTT configuration

In **delivery state**, MQTT functions are **disabled**. The MQTT client can be configured either using the Web interface or directly via a JSON object sent in an HTTP request. For more information see chapter MQTT configuration - Quick start guide on page 133.

The configuration URL is:

http://[ip-address]/w/config/mqtt.json

The configuration can also read back as a JSON file:

http://[ip-address]/r/config/mqtt.json

The configuration is a JSON object. Each JSON member is a configuration element. The object must not contain all elements. Only the provided elements will be changed. The configuration changes apply only after a device restart

The following configuration elements are available (default values in bold):

Element	Data type	Description	Example data
mqtt-enable	boolean	Master switch for the MQTT client.	true / false
broker	string	IP address of the MQTT Broker	"192.168.1.1"
login	string	Username for MQTT Broker	"admin" (Default: null)
password	string	Password for MQTT Broker	"private" (Default: null)
port	number	Broker port	1883
base-topic	string	Base topic	"iomodule_[mac]" (Default: " lionx ")
will-enable	boolean	If true, the device provides a last will message to the broker	true / false
will-topic	string	The topic for the last will message.	(Default: null)
auto-publish	boolean	If true, all enabled domains will be published automatically in the specified interval.	true / false
publish-interval	number	The publish interval in ms if autopublish is enabled. Minimum is 250 ms.	2000
publish-identity	boolean	If true, all identity domain data will be published	true / false
publish-config	boolean	If true, all config domain data will be published	true / false
publish-status	boolean	If true, all status domain data will be published	true / false
publish-process	boolean	If true, all process domain data will be published	true / false
publish-devices	boolean	If true, all IO-Link Device domain data will be published	true / false
commands-allowed	boolean	Master switch for MQTT commands. If false, the device will not subscribe to any command topic, even if specific command topics are activated below.	true / false
force-allowed	boolean	If true, the device accepts force commands via MQTT.	true / false
reset-allowed	boolean	If true, the device accepts restart and factory reset commands via MQTT.	true / false
config-allowed	boolean	If true, the device accepts configuration changes via MQTT.	true / false

Element	Data type	Description	Example data		
qos	number	, ,	0 = At most once		
	for all published messages.		for all published messages.	for all published messages.	1 = At least once
			2 = Exactly once		

Table 12: MQTT configuration

MQTT response:

The resulting response is a JSON object with a "status" field. Status should be "0" if no error occurred and "-1" if there is an error.

In case of an error, the response contains an error array.

The error array contains an error object for each error occurred. The object consists of a field "Element" which names the config element which caused the error, and a field "Message" for the error message.

- A malformed JSON object produces an error.
- Not existing parameters produce an error.
- Parameters with a wrong data type produce an error.

It is not allowed to write all available parameters at once. You may write only one or a limited number of parameters.

Examples:

```
{"status": -1, "error": [{"Element": "publish-interval", "Message": "Integer
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

For more information see chapter MQTT topics on page 125.

14.1.2 MQTT topics

MQTT mainly relates to topics. All messages are attached to a topic which adds context to the message itself. Topics may consist of any string and they are allowed to contain slashes (/) as well as wildcard symbols (*, #).

14.1.2.1 Base topic

For LioN-X and the LioN-Xlight variants there is a configurable *Base topic* which is the prefix for all topics. The *Base topic* can be chosen freely by the user. The *Base topic* can also contain selected variables as shown in Table 13: Base topic variables on page 125.

Variables in the *Base topic* have to be written in brackets ("[]"). The following variables are possible:

Variable	Description
mac	The MAC address of the device
name	The name of the device
order	The ordering number of the device
serial	The serial number of the device

Table 13: Base topic variables

Example:

The Base topic "io_[mac]" translates to "io_A3B6F3F0F2F1".

All data is organized in domains. The domain name is the first level in the topic after the *Base topic*. Note the following notation:

Base-Topic/domain/.....

There are the following domains:

Domain name	Definition	Example content
identity	All fixed data which is defined by the used hardware and which cannot be changed by configuration or at runtime.	Device name, ordering number, MAC address, port types, port capabilites and more.
config	Configuration data which is commonly loaded once at startup, mostly by a PLC.	IP address, port modes, input logic, failsafe values and more.
status	All (non-process) data which changes quite often in normal operation.	Bus state, diagnostic information, IO- Link device status and data.
process	All process data which is produced and consumed by the device itself or by attached devices.	Digital inputs, digital outputs, cyclic IO- Link data.
iold	IO-Link device parameters according to the IO-Link specification.	Vendor name, product name, serial number, hardware revision, software revision and more.

Table 14: Data domains

There is often one topic used for all gateway related information and topics for each port. All identity topics are published just once at start-up, because this information should never change. All other topics are published either in a fixed interval or just triggered manually, according to the configuration.

Topic	Content examples	Total publish count	Publish interval
[base-topic]/identity/ gateway	Name, ordering number, MAC, vendor, I&M etc.	1	Startup
[base-topic]/identity/ port/n	Port name, port type	8	Startup
[base-topic]/config/ gateway	Configuration parameters, ip address etc.	1	Interval
[base-topic]/config/port/ n	Port mode, data storage, mapping, direction	8	Interval
[base-topic]/status/ gateway	Bus state, device diagnosis, master events	1	Interval
[base-topic]/status/port/ n	Port or channel diagnosis, IO-Link state, IO- Link device events	8	Interval
[base-topic]/process/ gateway	All Digital IN/OUT	1	Interval
[base-topic]/process/ port/n	Digital IN/OUT per port, IOL-data, pdValid	8	Interval
[base-topic]/iold/port/n	IO-Link device parameter	8	Interval

Table 15: Data model

An MQTT client which wants to subscribe to one or more of these topics can also use wildcards.

Full topic	Description
[base-topic]/identity/gateway	Receive only indentity objects for the gateway
[base-topic]/identity/#	Receive all data related to the identity domain
[base-topic]/status/port/5	Receive only status information for port number 5
[base-topic]/+/port/2	Receive information of all domains for port number 2
[base-topic]/process/port/#	Receive only process data for all ports
[base-topic]/config/#	Receive config data for the gateway and all ports.

Table 16: Topic use case examples

14.1.2.2 Publish topic

Overview of all publish JSON data for the defined topics:

Кеу	Data type
tbd	json_string
ordering_number	json_string
device_type	json_string
serial_number	json_string
mac_address	json_string
production_date	json_string
fw_name	json_string
fw_date	json_string
fw_version	json_string
hw_version	json_string
vendor_name	json_string
vendor_address	json_string
vendor_phone	json_string
vendor_email	json_string
vendor_techn_support	json_string
vendor_url	json_string
vendor_id	json_integer
device_id	json_integer

Table 17: Identity/gateway

Key	Data type	Range	Default value	Remarks
fieldbus_protocol	json_string	profinet, ethernet/ip, ethercat		
network_configuration	json_string	PNS: dcp EIS: stored_value, bootp, dhcp		
rotary_switches	json_integer	0999		
ip_address	json_string		192.168.1.1	
subnet_mask	json_string		255.255.255.0	
report_alarms	json_boolean		0.0.0.0	
report_ul_alarm	json_boolean	true / false	true	
report_do_fault_without_ul	json_boolean	true / false	false	
force_mode_lock	json_boolean	true / false	false	
web_interface_lock	json_boolean	true / false	false	
do_auto_restart	json_boolean	true / false	true	
fast_startup	json_boolean	true / false	false	PROFINET and EIP only

Table 18: Config/gateway

Key	Data type	Range	Default value	Remarks
protocol	json_string	wait_for_io_system wait_for_io_Connection failsafe connected error		
ethernet_port1	json_string	100_mbit/s_full 100_mbit/s 10_mbit/s_full 100_mbit/s		
ethernet_port2	json_string	100_mbit/s_full 100_mbit/s 10_mbit/s_full 100_mbit/s		
module_restarts	json_integer	04294967295		
channel_diagnosis	json_boolean	true / false		
failsafe_active	json_boolean	true / false		
system_voltage_fault	json_boolean	true / false		
actuator_voltage_fault	json_boolean	true / false		
internal_module_error	json_boolean	true / false		
forcemode_enabled	json_boolean	true / false		

Table 19: Status/gateway

Key	Data type	Range	Default value	Remarks
Input_data	json_integer[]			
output_data	json_integer[]			

Table 20: Process/gateway

Key	Data type	Range	Default value	Remarks
port	json_integer	18		
type	json_string	digital_universal digital_input digital_Output io_link		
max_output_power_cha	json_string	2.0_mA 0.5_mA		
max_output_power_chb	json_string	2.0_mA 0.5_mA		
channel_cha	json_string	input/output input output io_link aux		
channel_chb	json_string	input/output input output io_link aux		

Table 21: Identity/port/1 ... 8

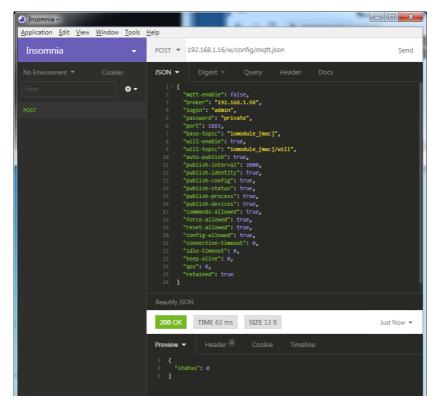
Key	Data type	Range	Default value	Remarks
port	json_integer	18		
direction_cha	json_string	input/output input output		
direction_chb	json_string	input/output input output		
failsafe_cha	json_string	set_low set_high hold_last	set_low	
failsafe_chb	json_string	set_low set_high hold_last	set_low	
surveillance_timeout_cha	json_integer	0255	80	
surveillance_timeout_chb	json_integer	0255	80	

Table 22: Config/port/1 ... 8

Key	Data type	Range	Default value	Remarks
port	json_integer	18		
physical_state_cha	json_integer	01		
physical_state_chb	json_integer	01		
actuator_short_circuit_cha	json_boolean	true / false		
actuator_short_circuit_chb	json_boolean	true / false		
sensor_short_circuit	json_boolean	true / false		

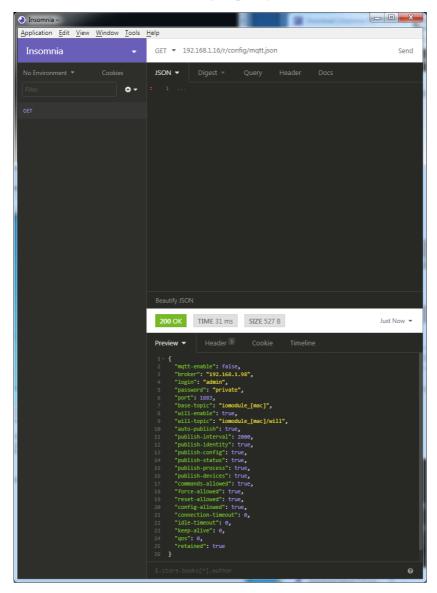
Table 23: Status/port/1 ... 8

14.1.3 MQTT configuration - Quick start guide


Attention: Lumberg AutomationTM is not responsible for any content of the referenced Web pages and provides no warranty for any functionality of the named third party software.

14.1.3.1 MQTT configuration via JSON

1. Depending on your application case, download and install *Insomnia* or a comparable application: https://insomnia.rest/download/


2. Configure MQTT:

POST: [IP-address]/w/config/mqtt.json

3. Read MQTT:

GET: [IP-address]/r/config/mqtt.json

14.2 OPC UA

OPC UA functions are **only** applicable for the following LioN-X variant:

0980 XSL 3912-121-007D-00F

OPC Unified Architecture (OPC UA) is a platform-independent standard with a service-oriented architecture for communication in and with industrial automation systems.

The OPC UA standard is based on the client-server principle and lets machines and devices, regardless of any preferred field bus, communicate horizontally among each other as well as vertically to the ERP system or the cloud. LioN-X provides an OPC UA server on field device level, with which an OPC UA client can connect for information exchange secure in transmission.

For OPC UA, we comply (apart from the exceptions listed below) with the IO-Link Companion Specification, which can be downloaded from catalog.belden.com or directly from io-link.com.

Feature	Support
Managing IODDs (chapter 6.1.6 in the specification)	Not supported
Mapping IODD information to OPC UA ObjectTypes (chapter 6.3 in the specification)	Not supported
IOLinkIODDDeviceType (chapters 7.2 ff. in the specification)	Not supported
ObjectTypes generated based on IODDs (chapters 7.3 ff. in the specification)	Not supported
Creation of Instances based on ObjectTypes generated out of IODDs (chapter 7.4 in the specification)	Not supported
IODDManagement Object (chapter 8.2 in the specification)	Not supported
RemovelODD Method (chapter 8.3 in the specification)	Not supported

Table 24: Non-supported OPC UA features according to the IO-Link Companion Specification

14.2.1 OPC UA configuration

In **delivery state**, OPC UA functions are **disabled**. The OPC UA Server can be configured either using the Web interface or directly via a JSON Object sent in an HTTP request. For more information see OPC UA configuration - Quick start guide on page 139.

The configuration URL is:

http://[ip-address]/w/config/opcua.json

The configuration can also read back as a JSON file:

http://[ip-address]/r/config/opcua.json

The configuration is a JSON object. Each JSON member is a configuration element. The object must not contain all elements. Only the provided elements will be changed. All configuration changed applies only after a device restart.

There are the following configuration elements (default values in bold):

Element	Data type	Description	Example data
port	integer	Server port for the OPC UA server.	0, 4840 , 0xFFFF
opcua-enable	boolean	Master switch for the OPC UA server.	true / false
anon-allowed	boolean	If true, anonymous login is allowed.	true / false
commands-allowed	boolean	Master switch for OPC UA commands. If false there will be no writeable OPC UA objects.	true / false
force-allowed	boolean	If true, the device accepts force commands via OPC UA.	true / false
reset-allowed	boolean	If true, the device accepts restart and factory reset commands via OPC UA.	true / false
config-allowed	boolean	If true, the device accepts configuration changes via OPC UA.	true / false

Table 25: OPC UA Configration

All configuration elements are optional and do not need a specific order. Not every element is required to be sent. This means that only configuration changes will be taken over.

Optional: The configuration parameters of OPC UA can be set directly via the Web interface. It is possible to download the Web interface for sharing with other devices.

Response:

The resulting response is a JSON object with a "status" field. Status should be 0 if no error occurred and -1 if there is an error.

In case of an error, the response contains an error array.

The error array contains an error object for each error occurred. The object consists of a field "Element" which names the config element which caused the error, and a field "Message" for the error message.

Examples:

```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

14.2.2 OPC UA address space

OPC UA provides different services on the LioN-X devices with which a client can navigate through the hierarchy of the address space and read or write variables. In addition, the client can monitor up to 10 attributes from the address space for value changes.

A connection to an OPC UA server is established via the endpoint URL:

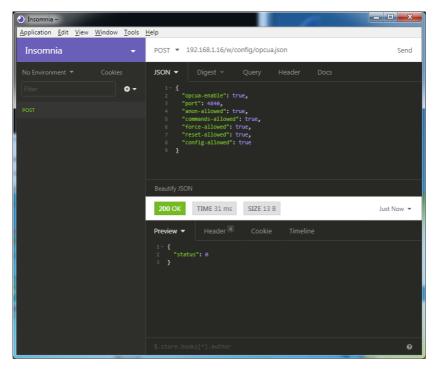
```
opc.tcp://[ip-address]:[port]
```

Various device data such as MAC address, device settings, diagnostics or status information can be read via *Identity objects*, *Config objects*, *Status objects* and *Process objects*.

Command objects can be read and written. This makes it possible, for example, to transfer new network parameters to the device, to use Force Mode or to reset the entire device to its factory settings.

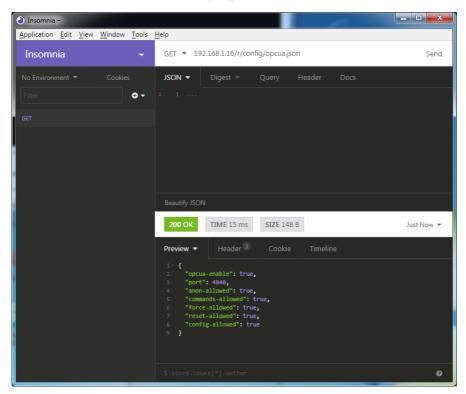
The following figures illustrate the OPC UA address space of the LioN-X devices. The objects and information displayed depend on the device variant used

14.2.3 OPC UA configuration - Quick start guide



Attention: Lumberg AutomationTM is not responsible for any content of the referenced Web pages and provides no warranty for any functionality of the named third party software.

14.2.3.1 OPC UA configuration via JSON


- 1. Depending on your application case, download and install Insomnia or a comparable application: https://insomnia.rest/download/
- 2. Configure OPC UA:

POST: [IP-address]/w/config/opcua.json

3. Read OPC UA:

GET: [IP-address]/r/config/opcua.json

14.3 REST API

The Representational State Transfer – Application Programming Interface (REST API) is a programmable interface which uses HTTP requests to GET and POST data. This enables the access to detailed device information.

For LioN-X and the LioN-Xlight variants, the REST API can be used to read the device status. For the LioN-X multiprotocol variants, the REST API can also be used to write configuration and forcing data.

There are two different REST API standards you can use for the requests:

1. A standardized REST API that has been specified by the IO-Link Community and is described separately:

```
JSON_Integration_10222_V100_Mar20.pdf
```

Please download the file from catalog.belden.com or directly from iolink.com.

Attention: Consider the following table to get an overview of the supported features of the IO-Link specification:

Feature	Supported	
Gateway	GET /identification	Yes
	GET /capabilities	Yes
	GET /configuration	Yes
	POST /configuration	Yes
	POST /reset	Yes
	POST /reboot	Yes
	GET /events	Yes
Master	GET /masters	Yes
	GET /capabilities	Yes
	GET /identification	Yes
	POST /identification	Yes

Feature		Supported
Port	GET /ports	Yes
į	GET /capabilities	Yes
	GET /status	Yes
	GET /configuration	Yes
	POST /configuration	Yes
	GET /datastorage	Not supported
	POST /datastorage	Not supported
Devices	GET /devices	Yes
	GET /capabilities	Yes
	GET /identification	Yes
	POST /identification	Yes
	GET /processdata/value	Yes
	GET /processdata/getdata/value	Yes
	GET /processdata/setdata/value	Yes
	POST /processdata/value	Yes
	GET /parameters	Yes
	GET /parameters/{index}/subindices	Yes
	GET /parameters/{parameterName}/subindices	Not supported
	GET /parameters/{index}/value	Yes
	GET /parameters/{index}/subindices/{subindex}/value	Yes
	GET /parameters/{parameterName}/value	Not supported
	GET /parameters/{parameterName}/subindices/ {subParameterName}/value	Not supported
	POST /parameters/{index}/value	Yes
	POST /parameters/{parameterName}/value	Not supported
	POST /parameters/{index}/subindices/{subindex}/value	Yes
	POST /parameters/{parameterName}/subindices/ {subParameterName}/value	Not supported
	POST /blockparametrization	Not supported
	GET /events	Yes

Feature		Supported
IODD	GET /iodds	Not supported
	POST /iodds/file	Not supported
	DELETE /iodds	Not supported
	GET /iodds/file	Not supported

Table 26: Support of REST API features according to the IO-Link specification

2. A customized Belden REST API that is described in the following chapters.

14.3.1 Standard device information

Request method: http GET

Request URL: <ip>/info.json

Parameters n.a.

Response format JSON

The goal of the "Standard device information" request is to get a complete snapshot of the current device status. The format is JSON. For IO-Link devices, all ports with connected IO-Link device information are included.

14.3.2 Structure

Name	Data type	Description	Example
name	string	Device name	"0980 XSL 3912- 121-007D-00F"
order-id	string	Ordering number	"935 700 001"
fw-version	string	Firmware version	"V.1.1.0.0 - 01.01.2021"
hw-version	string	Hardware version	"V.1.00"
mac	string	MAC address of the device	"3C B9 A6 F3 F6 05"
bus	number	0 = No connection 1 = Connection with PLC	1
failsafe	number	0 = Normal operation 1 = Outputs are in failsafe	0
ip	string	IP address of the device	
snMask	string	Subnet Mask	
gw	string	Default gateway	
rotarys	array of numbers (3)	Current position of the rotary switches: Array element 0 = x1 Array element 1 = x10 Array element 2 = x100	
ulPresent	boolean	True, if there is a UL voltage supply detected within valid range	
usVoltage_mv	number	US voltage supply in mV	
ulVoltage_mv	number	UL voltage supply in mV (only available for devices with UL supply)	
inputs	array of numbers (2)	Real state of digital inputs. Element 0 = 1 Byte: Port X1 Channel A to Port X4 Channel B Element 0 = 1 Byte: Port X5 Channel A to Port X8 Channel B	\[128,3\]
output	array of numbers (2)	Real State of digital outputs. Element 0 =1 Byte: Port X1 Channel A to port X4 Channel B Element 0 = 1 Byte: Port X5 Channel A to port X8 Channel B	\[55,8\]

Name	Data type	Description	n	Example
consuming	array of numbers (2)	Cyclic data	from PLC to device	
producing	array of numbers (2)	Cyclic data	from device to PLC	
diag	array of numbers (4)	Diagnostic	Element 0 = 1 Byte:	
		information	Internal module error (IME)	
			Force active mode:	
			Actuator: short	
			Sensor: short	
			U _L : fault	
			U _S : fault	
			Element 1 = 1 Byte: Sensor short circuit ports X1-X8.	
			Element 2 =1 Byte: Actuator short circuit ports X1 Channel A-X4 Channel B	
			Element 3 = 1 Byte: Actuator short circuit ports X5 Channel A-X8 Channel B	
fieldbus	FIELDBUS Object			
FIELDBUS Object				
fieldbus_name	string	Currently u	sed fieldbus	
state	number	Fieldbus sta	ate	
state_text	number	Textual representation of fieldbus state:		
		0 = Unknov	vn	
		1 = Bus dis	connected	
		2 = Preop		
		3 = Connec	eted	
		4 = Error		
		5 = Stateles	SS 	
forcing	FORCING Object	Information the device	about the forcing state of	

Name	Data type	Description	Example
channels	Array of CHANNEL (16)	Basic information about all input/output channels	
iol	IOL Object	Contains all IO-Link related information such as events, port states, device parameters.	
iol/diagGateway	array of DIAG	Array of currently active device/ gateway related events	
iol/diagMaster	array of DIAG	Array of currently active IOL-Master related events	
iol/ports	array of PORT (8)	Contains one element for each IO-Link port	
CHANNEL Object			
name	string	Name of channel	
type	number	Hardware channel type as number: 0 = DIO 1 = Input 2 = Output 3 = Input/Output 4 = IO-Link 5 = IOL AUX 6 = IOL AUX with DO 7 = IOL AUX with DO. Can be deactivated. 8 = Channel not available	
type_text	string	Textual representation of the channel type	
config	number	Current configuration of the channel: 0 = DIO 1 = Input 2 = Output 3 = IO-Link 4 = Deactivated 5 = IOL AUX	
config_text	string	Textual representation of the current config	
inputState	boolean	Input data (producing data) bit to the PLC	

Name	Data type	Description	Example
outputState	boolean	Output data bit to the physical output pin	
forced	boolean	True, if the output pin of this channel is forced	
simulated	boolean	True, if the input value to the PLC of this channel is simulated	
actuatorDiag	boolean	True, if the output is in short circuit / overload condition	
sensorDiag	boolean	True, if the sensor supply (Pin 1) is in short circuit / overload condition	
maxOutputCurrent _mA	number	Maximum output current of the output in mA	
current_mA	number	Measured current of the output in mA (if current measurement is available)	
voltage_mV	number	Measured voltage of this output in mV (if voltage measurement is available)	
PORT Object			
port_type	string	Textual representation of the IO-Link port type	
iolink_mode	number	Current port mode: 0 = Inactive 1 = Digital output 2= Digital input 3 = SIO 4 = IO-Link	
iolink_text	string	Textual representation of the current port mode	"Digital Input"
aux_mode	number	Indicates the configured mode for the Pin 2: 0 = No AUX 1 = AUX output (always on) 2 = Digital output (can be controlled by cyclic data) 3 = Digital input	
aux_text	string	Textual representation of the current aux mode	"AUX Output"
cq_mode	number	Port mode according to IOL specification	

Name	Data type	Description	Example
iq_mode	number	Pin2 mode according to IOL specification	
port_status	number	Port status according to IOL specification	
ds_fault	number	Data storage error number	
ds_fault_text	string	Textual data storage error.	
device	DEVICE Object	IO-Link device parameters. → Null if no IO-Link communication active	
diag	array of DIAG (n)	Array of port related events	
DIAG Object			
error	number	Error code	
source	string	Source of the current error.	"device" "master"
eventcode	number	Event code according to IO-Link specification	
eventqualifier	number	Event qualifier according to IO-Link specification	
message	string	Error message	"Supply Voltage fault"
DEVICE Object		Standard parameters of the IOL-Device	
device_id	number		
vendor_id	number		
serial	string		
baudrate	string	Baudrate (COM1,2,3)	
cycle_time	number	Cycle time in microseconds	
input_len	array of numbers (n)	IOL input length in bytes	
output_len	array of numbers (n)	IOL output length in bytes	
input_data	array of numbers (n)	IOL input data	
output_data	array of numbers (n)	IOL output data	
pd_valid	number	"1", if IOL input data is valid	
pdout_valid	number	"1", if IOL output data is valid	
FORCING Object		Forcing information of the device	

Name	Data type	Description	Example
forcingActive	boolean	Force mode is currently active	
forcingPossible	boolean	True, if forcing is possible and force mode can be activated	
ownForcing	boolean	True, if forcing is performed by REST API at the moment	
forcingClient	string	Current forcing client identifier	
digitalOutForced	array of numbers (2)	The force values of all 16 digital output channels.	
digitalOutMask	array of numbers (2)	The forcing mask of all 16 digital output channels.	
digitalInForced	array of numbers (2)	The force values of all 16 digital input channels.	
digitalInMask	array of numbers (2)	The forcing mask of all 16 digital input channels.	

14.3.3 Configuration and forcing

Method: POST

URL: <ip>/w/force.json

Parameters: None

Post-Body: JSON Object

Property	Data type	Example values	Description
forcemode	boolean	true / false	Forcing authority on/off
portmode	array (Port mode object)		
digital	array (Digital object)		
iol	array (IOL object)		

Table 27: Root object

Property	Data type	Example values	Remarks
port	integer	07	
channel	integer	"a","b"	optional default is "a"
direction	string	"dio","di","do","iol", "off", "aux"	
aux	string	"dio","di","do","iol", "off", "aux"	IOL only, but optional
inlogica	string	"no","nc"	
inlogicb	string	"no","nc"	

Table 28: Port mode object

Property	Data type	Example values	Remarks
port	integer	07	
channel	string	"a","b"	
force_dir	string	"phys_out","plc_in","clear"	optional default is "phys_out"
force_value	integer	0,1	

Table 29: Digital object

Property	Data type	Example values	Remarks
port	integer	07	
output	array[integer] or null to clear forcing	[55,88,120]	Output forcing
input	array[integer] or null to clear forcing	[20,0,88]	Input simulation to PLC

Table 30: IOL object

14.3.4 Reading and writing ISDU parameters

The *Indexed Service Data Unit* (ISDU) provides a highly flexible message format, which can contain single or multiple commands.

LioN-X IOL-Masters with IIoT support reading and writing ISDU parameters from connected IOL-Devices. It is possible to do this as a bulk transfer by reading and writing of multiple ISDU parameters via a single request.

14.3.4.1 Reading ISDU

Method: POST

URL: <ip>/r/isdu.json

Parameters: port (0-7)

Example: 192.168.1.20/r/isdu.json?port=5

Post-Body: JSON array of read ISDU object

Property	Data type	Example values	Remarks
ix	integer	0-INT16	Index to be read
subix	integer	0-INT8	Subindex to be read

Table 31: Read ISDU object

Property	Data type	Example values	Remarks
status	integer	0, -1	0 = no error, -1= an error occured
message	string		Error Message if error occured
data	array (Read ISDU data object)		data, if no error occured. otherweise null

Table 32: Read ISDU response object

Property	Data type	Example values	Remarks
ix	integer	0-INT16	Index that was read
subix	integer	0-INT8	Subindex that was read
status	integer	0, -1	0 = no error, -1= an error occured
eventcode	integer		IOL eventcode if status is -1
data	array[integer]		data, if no error occured. otherweise null

Table 33: Read ISDU data object

14.3.4.2 Writing ISDU

Method: POST

URL: <ip>/w/isdu.json

Parameters: port (0-7)

Post-Body: JSON array of write ISDU object

Property	Data type	Example values	Remarks
ix	integer	0-INT16	Index to be read
subix	integer	0-INT8	Subindex to be read
data	array[integer]		Data to be written

Table 34: Write ISDU object

Response: Write ISDU response object

Property	Data type	Example values	Remarks
status	integer	0, -1	0 = no error, -1= an error occured
message	string		Error Message if error occured
data	array (Write ISDU data object)		data, if no error occured. otherweise null

Table 35: Write ISDU response object

Property	Data type	Example values	Remarks
ix	integer	0-INT16	Index that was written
subix	integer	0-INT8	Subindex that was written
status	integer	0, -1	0 = no error, -1= an error occured
eventcode	integer		IOL eventcode if status is -1

Table 36: Write ISDU data object

14.3.5 Example: Reading ISDU

ISDU read request

Response

14.3.6 Example: Writing ISDU

ISDU write request

Response

14.4 CoAP server

The CoAP server functions are **only** applicable for the following LioN-X variant:

0980 XSL 3912-121-007D-00F

The **Co**nstrained **A**pplication **P**rotocol (CoAP) is a specialized Internet application protocol for constrained networks such as lossy or low power networks. CoAP is useful especially in M2M (Machine to Machine) communication and can be used to translate simplified HTTP requests of low speed networks.

CoAP is based on the Server-Client principle and a service layer protocol that lets nodes and machines communicate with each other. The LioN-X multiprotocol variants provide CoAP server functionalities via a REST API interface over UDP.

14.4.1 CoAP configuration

In **delivery state**, CoAP functions are **disabled**. The CoAP server can be configured either using the Web interface or directly via a JSON object sent in an HTTP request. For more information see chapter CoAP configuration - Quick start guide on page 161.

The configuration URL is:

http://[ip-address]/w/config/coapd.json

The configuration can also read back as a JSON file:

http://[ip-address]/r/config/coapd.json

The configuration is a JSON object. Each JSON member is a configuration element. The object must not contain all elements. Only the provided elements will be changed. The configuration changes apply only after a device restart.

The following configuration elements are available (default values in bold):

Element	Data type	Description	Example data
enable	boolean	Master switch for the CoAP server	true / false
port	integer (0 to 65535)	Port of the CoAP server	5683

Table 37: CoAP configuration

CoAP response:

The resulting response is a JSON object with a "status" field. Status should be "0" if no error occurred, and "-1" if there is an error.

In case of an error, the response contains an error array.

The error array contains an error object for each error occurred. The object consists of a field "Element" which names the config element that caused the error, and of a field "Message" for the error message.

Examples:

```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

14.4.2 REST API access via CoAP

A connection to the CoAP server running on the LioN-X multiprotocol variants can be established via the following URL:

```
coap://[ip-address]:[port]/[api]
```

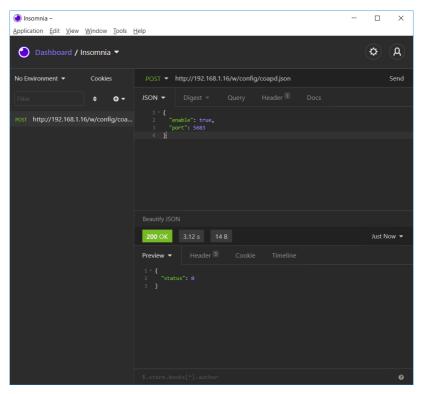
For LioN-X, the following REST API Requests (JSON format) can be accessed via a CoAP endpoint:

Туре	API	Note
GET	/r/status.lr	
GET	/r/system.lr	
GET	/info.json"	
GET	/r/config/net.json	
GET	/r/config/mqtt.json	
GET	/r/config/opcua.json	
GET	/r/config/coapd.json	
GET	/r/config/syslog.json	
GET	/contact.json	
GET	/fwup_status	
GET	/iolink/v1/gateway/identification	
GET	/iolink/v1/gateway/capabilities	
GET	/iolink/v1/gateway/configuration	
GET	/iolink/v1/gateway/events	
GET	/iolink/v1/masters	
GET	/iolink/v1/masters/1/capabilities	
GET	/iolink/v1/masters/1/identification	
GET	/iolink/v1/masters/1/ports	
GET	/iolink/v1/masters/1/ports/{port_number}/capabilities	This API is available for all 8 ports. {port_number} should be between "1" and "8".
GET	/iolink/v1/masters/1/ports/{port_number}/status	This API is available for all 8 ports. {port_number} should be between "1" and "8".
GET	/iolink/v1/masters/1/ports/{port_number}/configuration	This API is available for all 8 ports. {port_number} should be between "1" and "8".
GET	/iolink/v1/devices/master1port{port_number}/identification	This API is available for all 8 ports. {port_number} should be between "1" and "8".

Туре	API	Note
GET	/iolink/v1/devices/master1port{port_number}/capabilities	This API is available for all 8 ports. {port_number} should be between "1" and "8".
GET	/iolink/v1/devices/master1port{port_number}/processdata/ getdata/value	This API is available for all 8 ports. {port_number} should be between "1" and "8".
GET	/iolink/v1/devices/master1port{port_number}/events	This API is available for all 8 ports. {port_number} should be between "1" and "8".

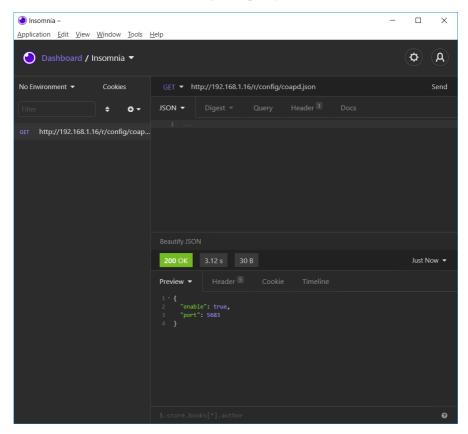
Table 38: REST API access via CoAP

14.4.3 CoAP configuration - Quick start guide



Attention: Lumberg AutomationTM is not responsible for any content of the referenced Web pages and provides no warranty for any functionality of the named third party software.

14.4.3.1 CoAP configuration via JSON


- **1.** Depending on your application case, download and install *Insomnia* or a comparable application: https://insomnia.rest/download/
- 2. Configure CoAP:

POST: [IP-address]/w/config/coapd.json

3. Read CoAP configuration:

GET: [IP-address]/r/config/coapd.json

14.5 Syslog

Syslog functions are only applicable for the following LioN-X variant:

0980 XSL 3912-121-007D-00F

The LioN-X multiprotocol variants provide a Syslog client which can connect with a configured Syslog server and is able to log messages.

Syslog is a platform-independent standard for logging messages. Each message contains a timestamp as well as information about the severity level and the subsystem. The Syslog protocol RFC5424 is based on the Server-Client principle and lets machines and devices send messages in the network and collect them centrally. (For more details on the used syslog standard, please refer to https://datatracker.ietf.org/doc/html/rfc5424.)

LioN-X supports the storage of 256 messages in a ring buffer which are sent to the configured Syslog server. When the ring is full with 256 messages, the oldest message is always replaced by the newly arriving messages. All messages can be saved on the Syslog server. The Syslog client of the IO-Link Master will not store any message permanently.

14.5.1 Syslog configuration

In **delivery state**, Syslog functions are **disabled**. The Syslog client can be configured either using the Web interface or directly via a JSON object sent in an HTTP request. For more information see chapter Syslog configuration - Quick start guide on page 166.

The configuration URL is:

http://[ip-address]/w/config/syslog.json

The configuration can also read back as a JSON file:

http://[ip-address]/r/config/syslog.json

The configuration is a JSON object. Each JSON member is a configuration element. The object must not contain all elements. Only the provided elements will be changed. The configuration changes apply only after a device restart.

The following configuration elements are available (default values in bold):

Element	Data type	Description	Example data
syslog-enable	boolean	Master switch for the Syslog client	true / false
global-severity	integer	Severity level of Syslog client 0 - Emergency 1 - Alert 2 - Critical 3 - Error 4 - Warning 5 - Notice 6 - Info 7 - Debug The client will log all messages of severity according to the setting, including all below levels.	0/1/2/ 3 /4/5/6/7
server-address	string (IP address)	IP address of the Syslog server	192.168.0.51 (Default: null)
server-port	integer (0 to 65535)	Server port of the Syslog server	514
server-severity	integer (0 to 7)	Severity level of Syslog server 0 – Emergency 1 – Alert 2 – Critical 3 – Error 4 – Warning 5 – Notice 6 – Info 7 – Debug	0/1/2/ 3 /4/5/6/7

Table 39: Syslog configuration

Syslog response:

The resulting response is a JSON object with a "status" field. Status should be "0" if no error occurred, and "-1" if there is an error.

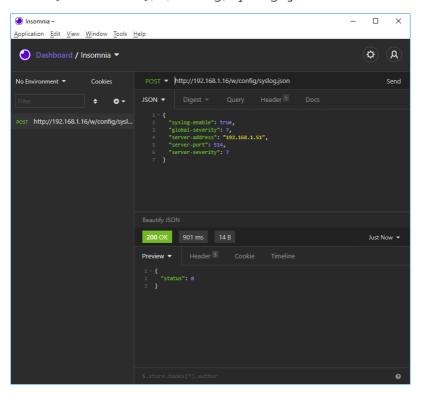
In case of an error, the response contains an error array.

The error array contains an error object for each error occurred. The object consists of a field "Element" which names the config element that caused the error, and of a field "Message" for the error message.

Examples:

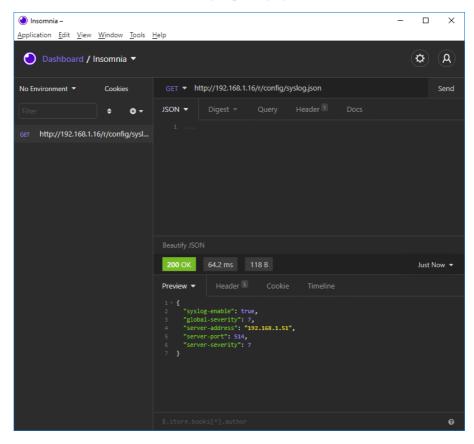
```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean expected"}]}
{"status": 0}
{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON object"}]}
```

14.5.2 Syslog configuration - Quick start guide


Attention: Lumberg AutomationTM is not responsible for any content of the referenced Web pages and provides no warranty for any functionality of the named third party software.

14.5.2.1 Syslog configuration via JSON

1. Depending on your application case, download and install *Insomnia* or a comparable application: https://insomnia.rest/download/


2. Configure Syslog:

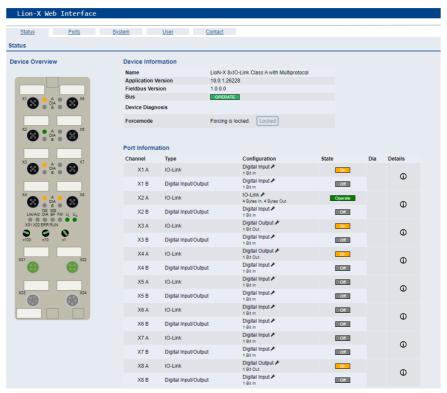
POST: [IP-address]/w/config/syslog.json

3. Read Syslog configuration:

GET: [IP-address]/r/config/syslog.json

15 The integrated Web server

LioN-X and the LioN-Xlight variants are equipped with an integrated Web server which makes functions for the device configuration and the display of status and diagnostic information available via a Web interface.

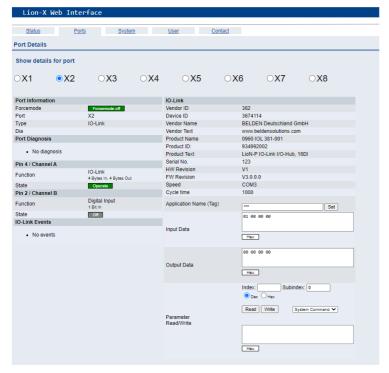

The Web interface provides an overview of the configuration and status of the device. It is also possible to use the Web interface to trigger a reboot, reset to the factory defaults, or perform a firmware update.

Enter http://followed by the IP address, such as http://192.168.1.5, in your Web browser's address bar. If the status page of the device is not displayed, check your browser and firewall settings.

15.1 LioN-X 0980 XSL... variants

15.1.1 The Status page

The status page provides a quick overview of the current state of the device.


The left side shows a graphical representation of the module with all its LEDs and the positions of the rotary encoding switches.

The right side shows the "Device Information" table with some basic data for the module; for example, the variant, the cyclic communication status and a diagnostic indicator. The indicator shows whether diagnostics for the module exist.

The "Port Information" table shows the configuration and state of the I/O ports.

15.1.2 The Ports page

The page shows detailed port information. In the field **Port Diagnosis**, incoming and outgoing diagnostics are displayed as clear text. **Pin 2** and **Pin 4** contain information about the configuration and state of the port. For IO-Link ports, additional information relating to the connected sensor and the process data is displayed.

15.1.3 The System page

The System page shows the basic information for the module like **Firmware** version, **Device** information, **Ethernet**, **Network** and **Fieldbus** information.

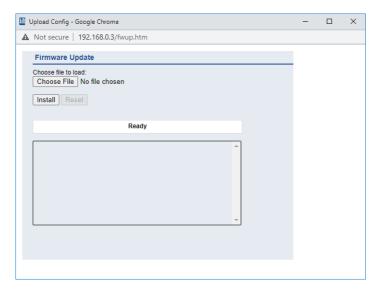
Restart Device

The module initializes a software reset.

Reset to Factory Settings

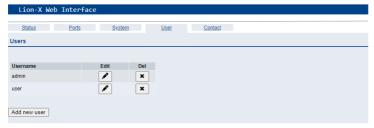
The module restores to the default factory settings.

IP Settings


Use this parameter to change the current IP address of the module.

For PROFINET, this is only useful during commissioning. Normally, the PLC sets the IP address at start-up by detecting the PROFINET module via its device name.

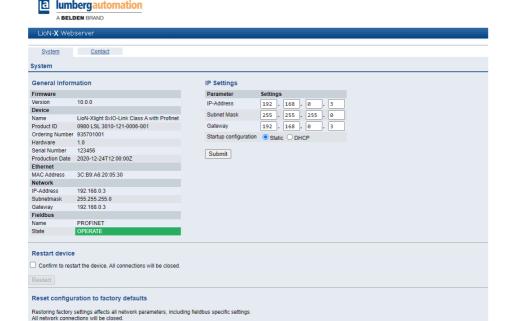
Firmware Update


The module initializes a Firmware update.

For a firmware update choose the *.ZIP container available on our website or ask our support team. Afterwards follow the instructions shown on your screen.

15.1.4 The User page

The User page provides the user management of the Web interface. New users with access rights **Admin** or **Write** can be added here. For security reasons please change the default admin password immediately after configuring the device.


Default user login data:

▶ User: admin

Password: private

15.2 LioN-Xlight 0980 LSL... variants

15.2.1 The System page

The System page shows the basic information for the module like **Firmware** version, **Device** information, **Ethernet**, **Network** and **Fieldbus** information.

Restart Device

Firmware update

The module initializes a software reset.

Reset to Factory Settings

Note: If the module has rotary switches, the new IP address is equivalent to the rotary switch position

Confirm to reset the device. All configuration data will be overwritten by default values!

The module restores to the default factory settings.

IP Settings

Use this parameter to change the current IP address of the module.

For PROFINET, this is only useful during commissioning. Normally, the PLC sets the IP address at start-up by detecting the PROFINET module via its device name.

Firmware Update

The module initializes a Firmware update.

For a firmware update choose the *.ZIP container available on our website or ask our support team. Afterwards follow the instructions shown on your screen.

16 Technical data

The following sections give an overview of the most important functional data needed to operate the device. For further information and detailed technical data, see the respective **Data Sheet** of your required product in the product specific download area on catalog.belden.com.

16.1 General

Protection class (Only applies if the connectors are screwed together or if protective caps are used.) ²	IP65 IP67 IP69K	
Ambient temperature (during operation and storage)	0980 XSL 3x12-121	-40 °C to +70 °C (-40 °F to +158 °F)
	0980 LSL 3x11-121	-20 °C to +60 °C
	0980 LSL 3x10-121	(-4 °F to +140 °F)
Weight	LioN-X 60 mm	ca. 500 gr.
Ambient moisture	Max. 98% RH (For UL applications: Max. 80% RH)	
Housing material	Die-cast zinc	
Surface finish	Frosted nickel	
Flammability class	UL 94 (IEC 61010)	
Vibration resistance (oscillation) DIN EN 60068-2-6 (2008-11)	15 g / 5-500 Hz	
Shock resistance DIN EN 60068-2-27 (2010-02)	50 g / 11 ms +/- X,Y,Z	
Fastening torques	M4 fixing screws	1 Nm
	M4 ground connection	1 Nm
	M12 connector	0.5 Nm
Permitted cables	Ethernet cables according to IEEE 802.3, min. CAT 5 (shielded) Max. length of 100 m, not routed out of facility (= local network)	

Table 40: General information

² Not under UL investigation.

16.2 EtherNet/IP protocol

Protocol	EtherNet/IP, CIP V3.27
Update cycle	1 ms
EDS file	EDS-V3.27.1-BeldenDeutschland-XXX-yyyymmdd.eds
Transmission rate	10/100 Mbit/s, half/full duplex
Transmission procedure Autonegotiation	10BASE-T/100BASE-TX supported
RPI max.	1 ms
Vendor ID	21
Product type	12 (Communications Adapter)
Product code	41000 (0980 XSL 3912-121-007D-00F, 935700-001) 41001 (0980 LSL 3111-121-0006-002, 935701-002) 41002 (0980 LSL 3110-121-0006-001, 935702-002)
Supported Ethernet protocols	Ping ARP- HTTP TCP/IP DHCP/BOOTP
Switch functionality	Integrated
EtherNet/IP interface Connections Autocrossing Electrically isolated Ethernet ports -> FE	2 M12 sockets, 4-pin, D-coded (see pin assignments) 2 M12 Hybrid male/female, 8-pin supported 2000 V DC

Table 41: EtherNet/IP protocol

16.3 Power supply of the module electronics/ sensors

Nominal voltage U _S	24 V DC (SELV/PELV)		
Voltage range	18-30 V DC		
Power consumption of module electronics	Typically 160 mA (+/-20 % at U _S nominal voltage)		
Voltage level of the sensor power supply	Min. (U _S – 1.5 V)		
Voltage ripple U _S	Max. 5 %		
Power supply interruption	Max. 10 ms	_	
Current consumption sensor system	0980 XSL 3912-121	Port X1 – X8 (Pin 1)	max. 4 A per port (at T _{ambient} = 30° C)
(L+ / Pin 1)	0980 LSL 3x11-121	Port X1 – X8 (Pin 1)	max. 2 A per port (at T _{ambient} = 30° C)
	0980 LSL 3x10-121	Port X1 – X4 (L+ / Pin 1)	max. 2 A per port (at T _{ambient} = 30° C)
		Port X5 – X8 (Pin 1)	max. 0.7 A in total for ports X5 – X8
Short circuit/overload protection of sensor supply	Yes, per port		
Reverse polarity protection	Yes		
Operational indicator (U _S)	LED green: 18 V (+/- 1 V) < U _S		
(US)	LED red: U _S < 18 V (+/- 1 V)		
Port X03, X04	M12-L-coded Power, connector/socket, 5-pole Pin 1 / Pin 3		

Table 42: Information on the power supply of the module electronics/ sensors

16.4 Power supply of the actuators

Nominal voltage U _L	24 V DC (SELV/PELV)	
Voltage range	18-30 V DC	
Voltage ripple U _L	Max. 5 %	
Power supply interruption	Max. 10 ms	
Reverse polarity protection	Yes	
Operational indicator (U _L)	LED green: $18 \text{ V (+/- 1 V)} < U_L$ LED red: $U_L < 18 \text{ V (+/- 1 V)}$ or $U_L > 30 \text{ V (+/- 1 V)}$ * if "Report U_L supply voltage fault" is enabled.	
Port X03, X04	M12_L-coded Power, connector/socket, 5-pole Pin 2 / Pin 4	

Table 43: Information on the power supply of the actuators

16.5 IO-Link Master ports Class A, Pin 4

0980 XSL 3912-121	Port X1 – X8	M12 socket, 5-pin, Pin 4
0980 LSL 3x11-121		
0980 LSL 3x10-121	Port X1 – X4	

Table 44: IO-Link Master ports, Class A (Ch. A / C/Q / Pin 4)

16.5.1 Configured as a digital input

Input connection	0980 XSL 3912-121		Type 1 as per IEC 61131-2
	0980 LSL 3x11-121		
	0980 LSL 3x10-121	X1 - X4	Type 1 as per IEC 61131-2
		X5 - X8	Type 1 as per IEC 61131-2
Nominal input voltage	24 V DC		
Input current	Typically 3 mA		
Channel type	Normally open, p-switching		
Number of digital	0980 XSL 3912-121		8
inputs	0980 LSL 3x11-121		
	0980 LSL 3x10-121]
Status indicator	yellow LED		
Diagnostic indicator	red LED per channel		

Table 45: IO-Link Master Class A ports, pin 4, configured as digital inputs

16.5.2 Configured as a digital output

Attention: For LioN-X variants, the power for the outputs is supplied via the U_L power supply.

Attention: For LioN-Xlight variants, the power for the outputs is supplied via the U_S power supply.

Output type	normally open, p-switching	
Nominal output current per channel		
Signal status "1" Signal status "0"	min. (U _L -1 V)	
Max. output current per	0980 XSL 3912-121	16 A (M12 Power)
device	0980 LSL 3x11-121	4 A
	0980 LSL 3x10-121	2 A
Max. output current per	0980 XSL 3912-121	2 A
channel ³	0980 LSL 3x11-121	0.5 A (power supplied via U _S)
	0980 LSL 3x10-121	0.25 A for UL applications
Short-circuit/overload protected	yes/yes	
Behavior in case of short circuit or overload	disconnection with automatic power-on	
Number of digital outputs	0980 XSL 3912-121	8
	0980 LSL 3x11-121	
	0980 LSL 3x10-121	4
Status indicator	yellow LED per output	
Diagnostic indicator	red LED per channel	

Table 46: IO-Link Master Ports configured as digital outputs

Max. 2.0 A per channel; max. 6.5 A in total (for **UL applications** max. 5.0 A in total) for every port pair (X1/X2, X3/X4, X5/X6, X7/X8); max. 9.0 A in total (with derating) for the whole port group (X1 .. X8).

16.5.3 Configured as an IO-Link port in COM mode

IO-Link Master specification	v1.1.3 ready, IEC 61131-9
Communication rates	4.8 kbaud (COM 1) 38.4 kbaud (COM 2) 230.4 kbaud (COM 3)
Line lengths in the IO-Link Device	max. 20 m
Number of IO-Link ports	8
Min. IO-Link cycle time	400 μs

Table 47: As an IO-Link port in COM mode

16.6 IO-Link Master ports Class A, Pin 2

0980 XSL 3912-121	Port X1 – X8	M12 socket, 5-pin, Pin 2
0980 LSL 3x11-121		
0980 LSL 3x10-121		

Table 48: IO-Link Master ports, Class A (Ch. B, Pin 2)

16.6.1 Configured as a digital input

Input connection	0980 XSL 3912-121 0980 LSL 3x11-121		Type 1 as per IEC
			61131-2
	0980 LSL 3x10-121	X1 - X4	Type 1 as per IEC 61131-2
		X5 - X8	Type 1 as per IEC 61131-2
Nominal input voltage	24 V DC		
Input current	Typically 3 mA		
Channel type	Normally open, p-switching		
Number of digital	0980 XSL 3912-121		8
inputs	0980 LSL 3x11-121		
	0980 LSL 3x10-121		
Status indicator	white LED		·
Diagnostic indicator	red LED per channel		

Table 49: IO-Link Master Class A ports, pin 2, configured as digital inputs

16.6.2 Configured as a digital output

Attention: For LioN-X variants, the power for the outputs is supplied via the U_L power supply.

Attention: For LioN-Xlight variants, the power for the outputs is supplied via the U_S power supply.

Output type	normally open, p-switching	
Nominal output current per channel Signal status "1" Signal status "0"	min. (U _L -1 V) max. 2 V	
Max. output current per	0980 XSL 3912-121	16 A (M12 Power)
device	0980 LSL 3x11-121	4 A
	0980 LSL 3x10-121	2 A
Max. output current per	0980 XSL 3912-121	2 A
channel ⁴	0980 LSL 3x11-121	0 A (no outputs)
	0980 LSL 3x10-121	
Short-circuit/overload protected	yes/yes	
Behavior in case of short circuit or overload	disconnection with automatic power-on	
Number of digital outputs	0980 XSL 3912-121	8
	0980 LSL 3x11-121	-
	0980 LSL 3x10-121	-
Status indicator	white LED per output	
Diagnostic indicator	red LED per channel	

Table 50: IO-Link Master Ports configured as digital outputs

⁴ Max. 2.0 A per channel; max. 6.5 A in total (for **UL applications** max. 5.0 A in total) for every port pair (X1/X2, X3/X4, X5/X6, X7/X8); max. 9.0 A in total (with derating) for the whole port group (X1 .. X8).

16.7 LEDs

U _L	Green	Auxiliary sensor/actuator voltage OK
		18 V (+/-1 V) < U _L < 30 V (+/-1 V)
İ	Red [*]	Auxiliary sensor/actuator voltage LOW
		$U_L < 18 \text{ V (+/-1 V)}$ or $U_L > 30 \text{ V (+/-1 V)}$
		* if "Report U $_{L}$ supply voltage fault" is enabled.
İ	off	None of the above conditions
Us	Green	System/sensor voltage OK
		18 V (+/-1 V) < U _S < 30 V (+/-1 V)
	Red	System/sensor voltage LOW
		$U_{\rm S}$ < 18 V (+/- 1 V) or $U_{\rm S}$ > 30 V (+/- 1 V)
İ	off	None of the above conditions
X1 X8	Green	IO-Link COM Mode: IO-Link communication exists
A	Flashing green	IO-Link COM Mode: No IO-Link communication.
	Yellow	Standard-IO Mode: Status of digital input or
		output on C/Q (pin 4) line "on"
	off	None of the above conditions
X1 X8 B	White	Status of digital input or digital output on pin 2 line "on"
	Red	Short circuit on C/Q (pin 4) line
		/ All modes: Overload or short circuit on L+ (pin 1) line / communication error
	off	None of the above conditions
P1 Lnk/ Act P2 Lnk/ Act	Green	Ethernet connection to another subscriber exists. Link detected.
	Flashing yellow	Data exchange with another subscriber.
	off	No connection to another subscriber. No link, no data exchange.

MS	Green	Device is ready for operation.
	Flashing green	Device is ready but not configured yet.
	Red	Serious error that cannot be resolved
	Flashing Red	Minor error that can be resolved Example: An incorrect or contradictory configuration is classified as a minor error
	Alternately flashing red/green	The device is performing a self-test.
	off	The device is switched off.
NS	Green	Connected: The device has at least one connection.
	Flashing green	No connection: The device has no connection. IP address exists.
	Red	Duplicate IP address: The device has detected that the assigned IP address is already being used by another device.
	Flashing Red	Connection has exceeded time limit or connection interrupted.
	Alternately flashing red/green	The device is performing a self-test
	off	The device is switched off or has not been assigned an IP address

Table 51: Information on the LED colors

17 Accessories

In order to get access to various types of accessories, please visit our Web page:

http://www.beldensolutions.com